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Logger Placement is Critical for collecting
unbiased-accurate Data

1) Sampling Considerations in Lotic systems with Lakes and Deadwaters.

B
2) Groundwater Temperatures in Maine (~7°C) ‘F
Cold in Summer, / |

3)

Tips to help you place and maintain logger’s to help eliminate abnmally cold
water inputs that may bias data by 5-20°C

And/Or
Where are likely places to find cold water inputs!!!



Considerations about
Lakes and Deadwater’s

Rivers normally warm when they go downstream???
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Avarage Temperature 37
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r USGS-EPA National map for

Tw‘r shallow groundwater temperature

3 7.2 °C (45 F).

https://www3.epa.gov/ceampubl/learn2model/part-
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Oldie but Goodie from the 1980’s

Characteristics and Frequency of Cool-water Areas in a
Western Washington Stream g

Raobert E. Bilby e

Centralia Research Cenler
Weyerhaeusaer Company
Centralia WA 98531

1984. J. of Freshwater Ecology 2(6):593-602.
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Four distinct types of cool-water areas were located during this mid-
summer survey of Thrash Creek, Washington, a warm, fifth-order stream.
These areas were termed lateral seeps, pool bottom seeps, cold tribu-
tary mouths and flow through the bed, depending upon the entry point
and source of the cool water. ThEEE types differed with respect tc:-
average _size - ' - -
in the
on warm a y-nine such spots were

reach of the study stream. They accounted for 1.6% of the surface
area and 2.9% of the water volume on this stretch of stream.
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(2.2 mi)

1) Lateral Seeps, 2) Pool Bottom Seeps, 3) Cold Tributary Mouths, 4) Flow Through Bed
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Kurylyk, B., MacQuarrie K., Linnansaari T., Cunjak R. A, Curry R.A. 2014. Preserving, augmenting, and
creating cold-water thermal refugia in rivers: concepts derived from research on the Miramichi River, New
Brunswick (Canada). Ecohydrology. 14 p
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Figure 1. A conceptual overview of mechanisms that induce thermal diversity in rivers and create suitable thermal refugia. The estimated maximum

temperature differences between a particular thermal anomaly and the ambient river temperature given in brackets are derived from other literature

sources (Nielsen ef al., 1994: Ebersole et al, 2003b) and extensive aerial infrared images and in-stream thermal surveys of the Little Southwest
Miramichi River and other branches of the Miramichi River (e.g. Wilbur, 2012). Darker colors indicate colder water.




1) Lateral Seeps, 2) Pool Bottom Seeps, 3) Cold Tributary Mouths, 4) Flow Through Bed
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Look at Maine Surficial Geology
layer for Eskers!
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Pool Bottom Seep

——
— —
— —

cool water

As of most “Seeps”;
Cooling effect more
pronounced at low

flows when mixing is

reduced



Riverine Pools
compared to
Kettle Ponds

Kettle Pond Below 28 Pond [Narraguagus R.)
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1) Lateral Seeps, 2) Pool Bottom Seeps, 3) Cold Tributary Mouths, 4) Flow Through Bed
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Lastly

Maintain Loggers so they do not
interact with Hyporheic Flow
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Easy solution:
Don’t let your loggers become
buried under sediments! o Y PP S g o
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