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Growth  modeling  has  long  played  an  important  role  in ecology,  conservation  and  management  of many
species.  However,  adopting  a statistical  framework  that  includes  both  temporal  and  individual  variability
in the  growth  dynamics  has  proven  challenging.  In  this  paper,  we  use  a  Bayesian  state  space  framework
(BSSF)  to  estimate  parameters  of  a discrete  time  model  from  a mark-recapture  data  set of  age-1  juvenile
Atlantic  salmon.  We  use  a Gaussian  process  (GP)  based  approach  to model  variation  in  seasonal  growth
potential.  In  addition,  we  use  auxiliary  information  on  the  food  environment  as  prior  knowledge  of  sea-
sonal  fluctuations  in growth.  Parameters  for  the  GP  prior  and  measurement  error  variances  were  fixed  to
speed  convergence.  Posterior  estimates  of  model  parameters  were  relatively  insensitive  to these  choices.
Our model  captures  the  seasonal  growth  dynamics  of juvenile  Atlantic  salmon  as  evidenced  by  close

2
ark-recapture
andom effects
aussian process

agreement  between  observed  and  predicted  lengths  (r = 0.98).  In  addition,  the relatively  narrow  confi-
dence  intervals  indicated  significant  learning  in  the  parameters  of interest.  Finally,  our model  approach
was  able  to accurately  recover  missing  data  points.  Although  this  model  was  applied  to  a  mark-recapture
dataset  of  Atlantic  salmon,  the  generality  of the  approach  should  make  it applicable  to  a wide  variety  of
size trajectory  datasets,  and thus,  provides  a useful  tool  to  estimate  individual  and  temporal  variability
in growth  from  datasets  with  repeated  measurements.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Understanding growth rate variation is an important goal in
cological studies. Growth and consequently size variation can
trongly influence population dynamics (Ebenman and Persson,
988; DeAngelis et al., 1993; Peacor et al., 2007). As a cohort
ges, variation in growth occurs at two important scales, individ-
al and temporal. Individual variation in size can arise through a
ombination of intrinsic differences (Arendt, 1997; Fujiwara et al.,
004) and resource heterogeneity in the environment (Pfister and
eacor, 2003). Temporal variation occurs due to the tight relation-
hip between size and metabolism (Peters, 1983; Schmidt-Nielsen,
984) and through changes in the growth conditions, e.g. food avail-

bility and temperature, with time (Szalai et al., 2003). Because of
ts obvious importance, there have been many attempts to model

∗ Corresponding author. Present address: Department of Wildlife Ecology, Nutting
all, University of Maine, Orono, ME 04469-5755, United States.
el.: +1 207 581 2870; fax: +1 207 581 2858.

E-mail address: douglas.sigourney@maine.edu (D.B. Sigourney).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.08.009
growth; however, incorporating these important sources of varia-
tion presents many challenges.

There are a number of approaches to modeling growth. Models
based on simple mass-balance equations such as the von Berta-
lanffy growth function (VBGF) have been remarkably effective in
capturing the basic ontogenetic growth trajectory of many species
(von Bertalanffy, 1938; Quinn and Deriso, 1999; West et al., 2001).
However, in their simplest form, these models assume no individ-
ual or temporal variation. Ignoring individual variation can lead to
biased estimates of growth. For example, studies have found that
ignoring individual variability when fitting the VBGF can lead to
substantial bias in parameter estimates (Sainsbury, 1980; Eveson
et al., 2007) leading researchers to allow for individual differ-
ences when fitting the VBGF to mark-recapture data (Francis, 1988;
Laslett et al., 2002). A Bayesian hierarchical framework offers a
tractable and informative approach to account for individual vari-
ability in growth in a population (Clark, 2003; Clark et al., 2005).
For example, accounting for individual heterogeneity in capture

probabilities and survival can be difficult in mark-recapture studies
when maximizing the likelihood, but is more easily accomplished
by using Monte Carlo integration to handle the random effects
(Zheng et al., 2007). Hence, a Bayesian framework offers a viable

dx.doi.org/10.1016/j.ecolmodel.2012.08.009
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:douglas.sigourney@maine.edu
dx.doi.org/10.1016/j.ecolmodel.2012.08.009
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lternative to maximum likelihood approaches when estimating
rowth parameters for the VBGF (He and Bence, 2007).

In addition to individual variability, environmental conditions
hange through time producing temporal variability in growth
ynamics. For example, organisms living in temperate envi-
onments will often exhibit strong seasonality in their growth
ynamics (Baba et al., 2004; Bacon et al., 2005; Strothotte et al.,
005). This seasonality can reflect a mixture of fluctuations in tem-
erature and food availability as well as other factors that affect
he growth process (Vollestad et al., 2002; Letcher and Gries, 2003).
lthough time-dependent solutions of the VBGF have appeared in

he literature for decades (Levin and Goodyear, 1980), there have
een comparatively few attempts to account for temporal variabil-

ty when fitting VBGF models to field data (but see Szalai et al.,
003; Eveson et al., 2004). Previous approaches for incorporating
emporal variability in growth typically used parametric forms to
apture the seasonal rise and fall in growth rates (Jones et al., 2002;
veson et al., 2004). For example, Eveson et al. (2004) embedded

 sinusoidal function into the VBGF to describe seasonal growth in
outhern bluefin tuna. Although this approach could capture some
f the temporal variability, they note that the sinusoidal function
acks flexibility. Similarly, Jones et al. (2002) developed a model
ased on dynamic energy budget theory that included a seasona-

ity function to capture the rise and fall in growth. However, these
pproaches assume the chosen model is a good approximation to
he unknown temporal driver. An alternative approach is to use

 non-parametric function that does not assume a rigid relation-
hip between time and growth. Non-parametric functions offer

 promising method to infer ecological relationships when the
nderlying function is unknown (Cook, 1998; Munch et al., 2005;
ahlgren et al., 2011). When embedded in a Bayesian framework,
uxiliary information such as seasonal changes in prey availability
an be incorporated to inform this dynamical process.

A Bayesian state-space framework (BSSF) offers a comprehen-
ive probabilistic approach to modeling that can deal with many
ources of uncertainty (Clark, 2005). For example, the state-space
pproach deals explicitly with measurement and process errors
de Valpine and Hastings, 2002). In a growth modeling context,
f measurement error is ignored it can lead to substantial bias in

odel predictions and parameter estimates (Clark et al., 2007). The
ayesian context also allows for the use of prior information to help

nform the growth process (McCarthy and Masters, 2005). Finally,
arkov chain-Monte Carlo (MCMC) techniques commonly used to

stimate parameters in a BSSF can efficiently deal with hierarchical
odels. With the increase in computer power and availability of

oftware packages to perform MCMC  integration, the application
f these techniques has become increasingly common in the eco-
ogical literature (Cressie et al., 2009; de Valpine, 2009). Because
f these advantages, a number of recent studies have adopted a
ayesian approach to estimating parameters for the VBGF (Zhang
t al., 2009; Bal et al., 2011).

In this paper we present a simple linear growth model that can
e derived from the VBGF. We  apply our model to mark-recapture
ata of age-1 juvenile Atlantic salmon (Salmo salar). To capture
he various components of variation inherent in our dataset, we
dopt a BSSF that allows us to simultaneously account for both
easurement error and process error in the growth dynamics.
ur modeling approach is similar to one proposed by Clark et al.

2007) to model incremental growth in individual trees; however,
e include a flexible non-parametric growth function that allows

or temporal variation in the growth dynamics. A number of studies
ave indicated the importance of food availability in determining

rowth rates of salmonids in the wild (Nislow et al., 1998; Bacon
t al., 2005), and therefore, we include auxiliary information in the
orm of invertebrate drift samples to inform the temporal growth
ynamics, highlighting the advantage of the BSSF.
delling 247 (2012) 125– 134

2. Methods

2.1. Data collection

We  applied our model to a mark-recapture dataset of juvenile
Atlantic salmon from the Westbrook River located in Whately, MA,
USA. Details of the study site and data collection can be found
elsewhere in the literature (Letcher and Gries, 2003) so we will
provide only relevant details here. To capture individuals, elec-
trofishing was  conducted in an upstream direction using a two pass
removal approach. Sampling occurred on four occasions through-
out the course of the year from March through December. Each
sampling occasion took approximately ten days. Captured salmon
were placed in buckets before tagging. Each fish that was  large
enough for tagging (>6.0 cm and >2.0 g) was  placed in a solution of
MS-222 that was  buffered with sodium bicarbonate. Once a fish was
sufficiently anaesthetized, it was  scanned for a PIT tag, measured
for total length and fork length and weighed. If a PIT tag was  not
present, the fish was  tagged by making a small incision just below
the pectoral fins and inserting a tag into the peritoneal cavity. In
addition, all fish are lightly squeezed around the abdomen to check
for milt, indicating a mature male. All fish were returned to the sec-
tion of capture. To fit our model we used data from the 2000 cohort
that included 137 individuals with a total of 365 observations of
length.

In addition, in between each sampling occasion a drift sample
of invertebrates was  conducted during three different days at three
different locations within the study site (see Grader and Letcher,
2006 for more details). Drift samples were conducted by placing
a net in the brook for 20 min  and collecting the drift in a cod end.
Flow velocities were measured to estimate the volume of water
passing through the net. For the purpose of our growth model we
used total invertebrate biomass by volume as a measure of food
availability during that specific growth interval. Values ranged from
0.78 mg/m3 in the spring to 0.06 mg/m3 in summer. Because three
replicates were made during each sampling period we  could calcu-
late a mean and variance for each sample. We  used this information
to help inform the shape of the temporal growth function described
below.

2.2. Model development

Similar to other mark-recapture studies of stream salmonids
(Vollestad et al., 2002; Bacon et al., 2005), we observed consid-
erable variation in both seasonal and individual growth within the
study site (Fig. 1). Therefore, to estimate parameters and make an
inference about seasonal growth potential we adopt a hierarchical
state-space framework wherein we  allow for individual variation in
growth while explicitly modeling observation and process uncer-
tainty (Fig. 2). The observation model accounts for the fact that the
observed lengths may  have associated measurement errors while
the process model allows for the uncertainty associated with indi-
vidual growth dynamics. In our specific data example, error in the
measurements of length of recaptured Atlantic salmon is quite low
and could probably be safely ignored. However, we retain the state-
space framework to facilitate application of the model to a variety
of other datasets where uncertainty in measurements could be
considerably higher, e.g. back-calculated growth trajectories from
otoliths or scales.

The basic structure of the state-space framework includes spec-
ifying a probability distribution for the observation model that
connects the observed data to the model predictions and specifying

a process model which describes growth dynamics (Clark, 2005).
Finally, to complete the Bayesian model specification, prior distri-
butions are specified for all parameters. See Clark (2005) for an
excellent introduction to Bayesian state-space modeling. To model
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Fig. 1. Growth trajectories in length (cm) of age 1 juvenile Atlantic salmon over the
course of a season (March to December). Mean size ( ) ±1 SD (grey region) and
i
r

ndividual growth trajectories (. . .)  of six individuals are shown. Black circles (�)
epresent observed lengths (cm).

δ .

yi,t = Li,t

Li,0 δ F( t)αi

)(1,, tFLL ititi αδ += −Stat e Dynam ics

Observa�on Dynamics
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Param eter s Defi ning GP Prior for
Temporal Growth Func�on
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  mt  C 

mc  Cc Condi�oned Pri

mdCd. Informed Prior

Fig. 2. Parameters defining GP prior 
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temporal variability in growth, we add another layer to this struc-
ture, by specifying a prior on seasonal growth potential. Finally, to
account for individual variation in growth, we add one more layer
to the model describing individual variation in growth potential.
An overview of the basic model structure is given by

Observation model : P(yi,t |Li,t,�)

Process model : P(Li,t |Li,t−1,F(t), ˛i, �)

Prior on seasonal growth potential : P(F(t)|�)

Prior on individual growth : P(˛i|�)

Priors on parameters/hyperparameters : P(�)

where yi,t is the observed length of individual i at time t, Li,t
is its actual length, F(t) is the unknown function describing sea-

sonal growth potential, ˛i represents individual variation in growth
potential, and � is a vector representing all of the remaining model
parameters. In the paragraphs that follow, we describe specific
forms for each of the model components.

α

Variance

Components

*

or

Hyp erpa rameter s

μα α

for temporal growth function.
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For the observation model, we assume normal, zero-mean
easurement errors. Specifically, the observed length of the ith

ndividual at time t, yi,t, is normally distributed with mean Li,t and
easurement variance �2

m

i,t∼N(Li,t, �2
m) (1)

Development of the process model is somewhat more involved
nd began by specifying a continuous time model for individual
rowth including seasonal variation in growth potential. However,
ince our data were collected at nearly fixed time intervals (90
ays ± 5 days), we integrated the continuous time model to obtain a
iscrete time representation (see Appendix A for details). Because

ndividual growth dynamics are likely to be driven by stochastic
ariation in feeding rates, activity levels, and local environmen-
al conditions, the resulting linear model is only an approximation
o an individual’s growth history. We  therefore allow for process
ncertainty in the growth dynamics. Specifically, the process model
or growth in length is

i,t = Li,t−1ı + ˛iF(t) + εi,t (2)

where εi,t represents process errors and are assumed to be nor-
ally distributed with variance �2

p . Since the model specifies the
ynamics of length (L) recursively, and the initial ‘true’ length of an

ndividual (Li,0) is unknown, we specify a uniform prior for initial
ength as Li,0 ∼ U(0,500).

One goal of our modeling approach was to model individual vari-
tion in growth using a hierarchical structure. We  therefore treat
he ˛i’s as random effects arising from a normal distribution with

ean �˛ and variance �2
˛. That is,

i∼N(�˛, �2
˛) (3)

.3. Modeling seasonal growth potential

There are a number of parametric functions that could be
ssumed for F(t) to capture the seasonal growth observed in our
ata. However, we endeavored to develop a model with wide appli-
ability that could capture any number of unknown functions while
aking limited assumptions about the shape of those functions.

herefore, to make an inference about temporal fluctuations in
nvironmental growth potential, we specify a Gaussian process
GP) prior (Neal, 1999) for F(t) and update it given the observed
rowth time series. A GP is a continuous stochastic process which
eneralizes the multivariate normal distribution and analogously
s specified in terms of mean and covariance functions, m and C
espectively. The mean function, m(t) gives the average value of
(t) evaluated at time t. The covariance between realizations of F(t)
t two points in time, say t and t′ is given by C(t,t′) = Cov(F(t), F(t′)).
he covariance function controls the shape of F(t) by determining
oth the variance in F(t) at a single point in time and the wiggliness
f F(t) through time. Although the GP prior makes distributional
ssumptions, it can be considered a nonparametric approach in the
ense that the parameters do not restrict the shape of the regression
odel (see Munch et al., 2005 for a detailed explanation).
The distribution of F(t) evaluated at a discrete, finite set of

imes is multivariate normal. Specifically, on a discrete set of times,
 = {t1,t2, . . .,  tn}, the prior distribution for F(t) at those times,
(t) = {F(t1), F(t2), . . .,  F(tn)} is given by the multivariate normal
VN(m, C) where the vector m = {m(t1), . . .,  m(tn)}T is the mean
unction evaluated at the times in t and the covariance matrix C is
he covariance function C evaluated at all pairs of times, i.e. the
th and kth element of C is given by C{j,k} = C(tj, tk). We  set the
rior mean function constant at 1 for all t. That is m(t) = 1 and
delling 247 (2012) 125– 134

consequently m is a vector of 1’s. We  assume a squared-exponential
covariance function C(t,t′), given by

C(t, t′) = v exp(−�(t − t′)2) (4)

where v is the prior variance in the growth potential and �
represents the rate at which the covariance decays with the time
difference. This particular choice of covariance function asserts
that, in the absence of other information, variability in growth
potential is smooth with roughly constant curvature over the year.
More in-depth description of covariance functions and their roles
in GP-based inference can be found in Rasmussen and Williams
(2006).

Importantly, the model described so far is unidentifiable in that
the average level of F(t) is confounded with the mean of the indi-
vidual growth parameters, �˛. To address this problem we can
constrain either the distribution for the ˛i’s or constrain F(t) in
some way. Using standard results for GPs (Rasmussen and Williams,
2006), we  modified the prior such that realizations of F(t) are con-
strained to integrate to 1 over the course of a year. We  denote
the mean and covariance functions of this constrained prior distri-
bution by mc(t) and Cc(t,t′). The corresponding constrained mean
vector and covariance matrix are denoted mc and Cc.

Note that this prior specification for F(t) is still relatively unin-
formative and asserts that we  have no information on seasonal
fluctuations in growth potential. However, we certainly know that
growth potential varies through time because of changes in food
availability and temperature (Nislow et al., 1998). We  therefore
used our invertebrate drift samples to update the prior for F(t),
inducing temporal variation in our prior on growth potential. To do
so, we standardized the drift density such that the mean is 1. We
then assume that, given F(tj),the observed, normalized drift den-
sity (dj) at time tj follows a normal distribution centered on F(tj)
with observation variance �2

d
. That is, dj ∼ N(F(tj), �2

d
). Gathering

the data for each sampling time, t = {t1, t2, . . .,  tn} into a vector of
observed drift densities d = {d1, d2, . . .,  dn}T, we  then use Bayes’ rule
to update the mean and covariance for F(t) given the information
in d, and denote the mean and covariance conditioned on the drift
densities by Cd and md, i.e.

F(t)
∣∣d, �2

d ∼MVN(md, Cd) (5)

where

Cd =
(

C−1
c + 1

�2
d

In

)−1

(6)

and

md = Cd

(
C−1

c mc + 1

�2
d

d

)
(7)

Here, In denotes the n × n identity matrix. This inclusion of aux-
iliary data on prey availability reflects anticipated variation in F(t).
Critically, this approach to incorporating temporal variation still
retains significant flexibility; the seasonal fluctuation in F(t) that we
infer from the growth data is not restricted to following this prior
and can depart significantly from it when there is clear information
in the growth data.

Eqs. (1)–(7) specify the observation model, a hierarchical model
for individual growth potential, the process model for individ-
ual growth dynamics, and a GP prior for seasonal variation in
growth potential. To complete the model, we specify priors for
the parameters and hyperparameters. Prior distributions for ı, the
hypereparamters �˛, �2

˛, the process error variance, �2
p , and the
initial, latent states, Li,0, are listed in Table 1. For the remaining,
unknown parameters (�, v, �2

d
, we fixed their values in the prior.

These parameters can be estimated (see Munch et al., 2005 for an
example), but doing so greatly extends the time to convergence.
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Table  1
Definitions of parameters and corresponding prior distribution.

Parameter Definition Prior

Growth parameters
ı Derived parameter that is proportional to net energy loss N(0.95,1000)
�˛ Hyperparameter for the mean of the random effects U(0,1000)
F(t)  See below
Parameters for the prior of F(t)
v Magnitude of the prior variance in F(t) Fixed to 10
�  Rate of decay in the covariance of F(t) Fixed to 0.5
m(t) Mean growth potential at time t
mc Conditioned prior mean
Cc Conditioned covariance
md Informed prior mean
Cd Informed prior covariance
Variance components
�2

P
Process error variance IG(2,0.01)

�↓(↑2 Hyperparameter determining the variance in the random effects IG(2,0.1)
�2

m Measurement error variance Fixed to 0.1
�2

d
Variance in observed food data Fixed to 0.3

State  variables
yi,t Observed length of fish i at time t
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than 0.5%, indicating that overall estimates of growth where robust
to assumptions on the magnitude of �2

m.

60

70
Li,0 Latent state representing the true, initial le

oreover, posterior distributions for F(t) are relatively insensitive
o choice of �, and v provided that v is reasonably large. Therefore,
o speed convergence, we fixed the values of � and v to 0.5, and 10
espectively in the prior (see Table 1). In keeping with other applica-
ions of state-space methods (Clark et al., 2007), the measurement
ariances for length and drift density were estimated directly from
epeated measurements. Specifically, we used a value of 0.1 cm2

or �2
m based on 10 repeated measurements of 10 individuals and

 value of 0.3 for �2
d

which was the highest variance observed over
ll food samples. For each fixed parameter, we  conducted a sensi-
ivity analysis by increasing the value of the parameter by 100%,
e-running the model, and summarizing the percent change in the
osterior distributions of the estimated parameters.

We used a Gibbs sampler (Gelman et al., 2004) to draw samples
rom the posterior and obtain parameters estimates. All calcu-
ations were carried out in software written by DS in Matlab
The Mathworks, Natick, MA). We  ran the sampler for 1 million
terations keeping one in every 100 samples to reduce autocorre-
ation. To assess convergence, we ran three separate chains. Visual
xamination of trace plots indicated adequate mixing. In addition,
onvergence of marginal, posterior distributions was  further con-
rmed by Gelman–Rubin statistics (Gelman et al., 2004) that were

ess than 1.02 for all parameters except for �2
p which had a value

f 1.14.

. Results

.1. Parameter estimates
Posterior medians and Bayesian credible intervals for the
rowth parameters and variances are provided in Table 2. Narrow
redible intervals indicate substantial learning in the parameters

able 2
osterior median values and 95% Bayesian credible intervals for parameters of the
rowth model.

Parameter Posterior median Credible interval

2.5% 97.5%

ı 0.99 0.92 1.04
�˛ 4.54 3.29 6.80
�↓(↑2 0.12 0.04 0.33
�2

P
0.007 0.002 0.020
f fish i U(0,500)

of interest (Table 2). The inclusion of individual random effects (˛i)
in the model seemed to capture an important component of varia-
tion as evidenced both by histograms of posterior median estimates
(Fig. 3) and posterior estimates of the variance component, �2

˛, with
Bayesian credible intervals that did not cover zero (Table 2). The
process error variance, �2

p , was  substantially lower than the ran-
dom effects error variance, �2

˛, and the assumed measurement error
variance, �2

m. The small variance in process error is not surprising
as the other sources of variation allow substantial flexibility in the
model.

Sensitivity analysis verified that marginal posterior distribu-
tions of growth parameters were relatively insensitive to choices
made in the prior (Fig. 4). Graphical comparisons of posterior
distributions for ı and �˛ showed high overlap regardless of pertur-
bations of fixed values (Figs. 4a and b, respectively). Of all the fixed
parameters, posterior distributions of ı and �˛ and the median esti-
mates of latent states, Li,t, were most sensitive to assumptions of
measurement error. However, we found that the latent states var-
ied by less than 4%, and the majority of estimates differed by less
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Fig. 3. Posterior median estimates of the random effects (˛i).
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.2. Seasonal growth potential

A comparison of prior distributions to the posterior distributions
f F(t) suggest considerable learning regardless of whether or not
ood data were available (Fig. 5). The uninformed prior (Fig. 5a) and

he constrained prior (Fig. 5b) were both relatively flat with high
rior uncertainty. The observed invertebrate drift data did inform
he shape of the prior though there was still considerable uncer-
ainty in F(t) (Fig. 5c). The estimated posterior distribution generally
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followed the shape of the informed prior but with considerably
greater precision (Fig. 5d). To assess the importance of incorporat-
ing food availability into the prior we  re-computed the posterior
without using the invertebrate data, i.e. using only the constrained
prior shown in Fig. 5b. The posterior distribution of F(t) using the

uniformed prior (Fig. 5e) was nearly identical to posterior distri-
bution using the constrained prior (Fig. 5d). Thus, information on
the food environment was not critical for estimating F(t) suggest-
ing that the observed growth trajectories contained considerable
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.3. Growth trajectories

We found close agreement between observed lengths and
odel estimates of length (Fig. 6). The close agreement between

bserved lengths, yi,t, and the estimated “true” lengths, Li,t, is not all

hat surprising as the individual variation and seasonal parameters
dd a high degree of flexibility. Posterior estimates of individ-
al length trajectories suggested the model was  able to capture
he seasonal shape of individual growth trajectories as well as
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the variability among individuals (Fig. 7a–d). The model estimated
the growth trajectory quite well for individuals with no missing
observations as evidenced by close agreement between estimates
and observations as well as narrow credible intervals around esti-
mates of length (Fig. 7a). For individuals with missing observations,
uncertainty in unobserved length tended to increase if there were
missing observations at the beginning of the growth trajectory
(Fig. 7b). However, information about an individual’s length at the
end and beginning of the growth seemed to help pin down uncer-
tainty where observations were missing (Figs. 7c and d).

The model’s ability to predict lengths for individuals with

missing observations was well demonstrated by its ability to pre-
dict observations for an individual whose observations had been
removed from the dataset (Fig. 8).
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. Discussion

Using a comprehensive growth modeling framework, we  were
ble to account for multiple levels of variation inherent in a mark-
ecapture data set of juvenile Atlantic salmon. The BSSF used here
llowed us to take a relatively simple model and accurately predict
he complex seasonal growth trajectories in a cohort of fish with
eparate life histories. Without this framework it would be diffi-
ult to accomplish this goal. Our model assumes that fish grow
ccording to the VBGF, but also accounts for process error that
ay  arise from model misspecification. In addition, we simul-

aneously address both temporal and individual variation in the
rowth dynamics, both of which are intrinsic characteristics of
tlantic salmon growth.

Atlantic salmon are known to exhibit individual variation
n growth due to their territorial behavior and differences in

etabolism (Metcalfe, 1998). Consequently, a model of Atlantic
almon growth needs to account for this variation. From our data,
t was clear that there was significant individual variation. Mixed

odels that account for individual variation offer many advantages
ver fixed effects models (Weisberg et al., 2010). Our modeling
pproach is not the first to include random effects in a growth
odeling context, however, most attempts have used likelihood

pproaches which involve complex integrals that can be compu-
ationally expensive (Sainsbury, 1980; Wang et al., 1995; Eveson
t al., 2007). For this reason a number of researchers are opting
o use Bayesian approaches as an alternative (Zhang et al., 2009).
n a Bayesian context, the random effects can be integrated over
sing MCMC  techniques. The linear dynamics of this model allow
or efficient Gibbs algorithms to be derived where we  can sample
oth the fixed maintenance parameter and the individual parame-
ers from a conditional distribution. Thus, our modeling approach
an efficiently deal with the issue of individual variation in a com-
rehensive probabilistic framework.

The temporal dynamics of temperature, flow and food availabil-
ty result in highly seasonal growth dynamics of stream salmonids
n northern streams (Letcher and Gries, 2003; Vollestad et al., 2002;
acon et al., 2005). There have been a number of attempts to include
emporal variability in growth models by using environmental vari-
bles (Millar and Myers, 1990; Millar et al., 1999; Jones et al.,
002). However, as Szalai et al. (2003) point out, these approaches
ither use a linear statistical model to relate environmental varia-
ion to growth or assume some functional relationship between the
rowth and the environmental variable(s) of interest. Complex bio-
ogical interactions such as cannibalism, pulses in prey abundance
r variation in the timing of reproduction can lead to variable sea-
onal growth trajectories that are not easily summarized by one
unctional form (Robins et al., 2006; Armstrong et al., 2010). Using

 GP prior, we included a temporal function that is not limited by
n assumed functional form, and therefore, allow the data more
reedom to inform the shape of the function. For example, the GP
rior does not assume growth increases or decreases in any partic-
lar way over the course of a year, and therefore, the relationship
etween season and growth can take on a number of functional
orms. In this sense, our model is not restricted to animals that only
xhibit fast spring growth and can be applied to fit any number of
omplicated growth trajectories. The advantage is no increase in
arameters is needed to model more complex growth trajectories
ith more temporal variability. Though rare in ecological model-

ng, flexible Bayesian nonparametric modeling approaches using
P priors may  offer a viable alternative to parametric approaches

n modeling complicated temporal dynamics (Munch et al., 2005;

anhatalo et al., 2012).

One advantage of our approach to modeling temporal variation
n growth is it allows for the use of prior information. In particular,

e asserted a priori that growth potential should track seasonal
delling 247 (2012) 125– 134

fluctuations in drift density. This correlation has been observed in
the study site (see Grader and Letcher, 2006). A popular alternative
approach would have been to include drift density as a covariate in
the model (Bacon et al., 2005). Doing so invariably requires some
assumptions about how drift density interacts with other environ-
mental variables in driving growth, even when flexible functional
forms are used. For instance, including an additive drift density
term to the discrete time growth model (Eq. (2)) directly would pro-
duce substantially different results from including an additive drift
density term to the continuous time growth model (Eq. (A1)) and
then integrating, which generates an exponentially weighted mov-
ing average of the basis functions used. Moreover, either addition
would assume that there was no interaction between food and tem-
perature. In our approach, drift densities are included only in the
prior for F(t). This method does not constrain the posterior for F(t)
to follow the observed drift density exactly while simultaneously
smoothing out variation in drift density via (Eq. (7)). The value in
doing so is that the inferred F(t) reflects realized seasonal variation
in growth potential rather than an assumed functional form and
implicitly integrates all of the environmental variables that drive
growth through time.

Although measurement error was small and could possibly be
ignored without biasing the growth dynamics, we found it nec-
essary to provide a BSSF that simultaneously addresses both the
error in the measurement of lengths and process uncertainty in
the assumed growth dynamics. First of all, we aimed to present
a general framework that could be applied to the growing num-
ber of longitudinal studies where measurement error may be
more substantial. For example, many studies use otoliths or scales
to reconstruct the growth history of individuals (Li et al., 2008;
McCarthy et al., 2008). Another promising approach to measur-
ing individual size is through the use of underwater video (Harvey
et al., 2003). These techniques, however, are all subject to non-
negligible measurement error. Secondly, it is often easy to gather
prior information on the magnitude and variability in measure-
ment error through repeated measurements. In the BSSF, this
information can be used to develop informative priors that help
pin down the measurement uncertainty and inform how much
of the remaining uncertainty is due to error in the growth model
assumptions. Application of the general state-space method has
proven successful in overcoming the problem of imperfect detec-
tion in a variety of situations including analyzing population
dynamics (Meyer and Millar, 1999; de Valpine, 2003; Lindley,
2003), survival estimation (Gimenez et al., 2007), animal move-
ments (Barraquand and Benhamou, 2008; Jonsen et al., 2005),
and growth (Fujiwara et al., 2005). By allowing the use of prior
information, the BSSF offers a comprehensive statistical method to
address the vexing problem of observation uncertainty (Clark et al.,
2007).

There are a number of potential uses but also limitations of this
modeling approach. Its ability to estimate size for missing observa-
tions and uncertainty around those observations could be of great
utility in studies that attempt to estimate size-dependent processes
from mark-recapture data. For example, maturity, emigration and
survival are all important demographic processes that are often
dependent on size. These processes can be efficiently modeled with
mark-recapture data; however, time varying covariates such as size
can present challenges (Gimenez et al., 2008). Our  growth model-
ing approach could be embedded in a detailed survival analysis that
tries to relate size to survival, maturation and movement. On the
other hand, we need to be cautious in using this approach to make
inferences about fish bioenergetics. For example, while it seems

that this approach would be useful to infer temporal and indi-
vidual variation in consumption, the mass-scaling assumptions of
the VBGF can result in biased estimates of consumption (Essington
et al., 2001).
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In summary we have presented a simple model for growth in
ength that follows VBGF dynamics and simultaneously accounts
or temporal and individual variation in growth. There have been a
umber of sophisticated modeling approaches applied to the VBGF
hat have dealt with individual variation (Sainsbury, 1980; Wang
t al., 1995) or temporal variation (Szalai et al., 2003), but we are
ot aware of any attempts to simultaneously include both in a
SSF. Using the statistical approach described herein, we devel-
ped a growth modeling framework that could (i) efficiently deal
ith inherent individual variation, (ii) include temporal variation

n growth without assuming a parametric function, (iii) explic-
tly separate measurement error from process error and (iv) allow
or auxiliary information to be used in a probabilistic framework
o inform the growth dynamics. By explicitly addressing multiple
ources of variation inherent in longitudinal studies, this approach
hould be readily applicable to a great number of datasets.
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ppendix A.

To derive a discrete time model for growth, we assume that
rowth of individuals in length, L, is well approximated by a time-
arying VBGF model

dLi,t

dt
= Gi(t) − �Li,t (A1)

where Gi(t) represents the ith individual’s energy gain rate, or
rowth potential, and �Li,t is the rate of energy loss. In keeping
ith much physiological data (Kerr, 1971; Kitchell et al., 1977),

his form asserts that most of the individual level variability in
rowth results from variation in rates of energy gain rather than
ize-specific energy losses.

To allow for persistent differences in individual growth, we
ecompose the net rate of energy gain into individual and seasonal
omponents as

i(t) = ˛if (t) (A2)

where f(t) represents seasonal variation in environmental
rowth potential common to all individuals and ˛i represents
he multiple of this growth potential realized by individual i. Our
pproach to modeling f(t)is described further below.

A more flexible alternative, which we defer to future analyses,
ould be to use a hierarchical model for Gi(t) directly.

Now that we have specified a continuous time model, we can
ntegrate Eq. (A1) to derive the following discrete time model

i,t = Li,t−1ı + ˛iF(t) (A3)

where

 = e−�

and

(t) = e−�t

∫ t

t−1

e�sf (s)ds
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