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Abstract – We examined habitat factors related to reach-scale brook trout Salvelinus fontinalis counts of four size
classes in two headwater stream networks within two contrasting summers in Connecticut, USA. Two study stream
networks (7.7 and 4.4 km) were surveyed in a spatially continuous manner in their entirety, and a set of Bayesian
generalised linear mixed models was compared. Trout abundance was best described by a zero-inflated overdispersed
Poisson model. The effect of habitat covariates was not always consistent among size classes and years. There were
nonlinear relationships between trout counts and stream temperature in both years. Colder reaches harboured higher
trout counts in the warmer summer of 2008, but this pattern was not observed in the cooler and very wet summer
of 2009. Amount of pool habitat was nearly consistently important across size classes and years, and counts of the
largest size class were correlated positively with maximum depth and negatively with stream gradient. Spatial
mapping of trout distributions showed that reaches with high trout counts may differ among size classes, particularly
between the smallest and largest size classes, suggesting that movement may allow the largest trout to exploit spatially
patchy habitats in these small headwaters.
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Introduction

Some habitat features affect animals of different life
stages uniformly, but others influence them differently.
For stream salmonids, stream temperature may have a
major impact on distribution and abundance across life
stages, but they also exhibit ontogenetic shifts in
stream microhabitat characteristics. Adult brook trout
Salvelinus fontinalis are typically associated with
greater depth and more cover, but juveniles may use
shallower habitats in tributaries (Johnson & Dropkin
1996; Petty et al. 2005; Deschênes & Rodrı́guez 2007).

Thus, brook trout may need to move to exploit spatially
patchy habitats and resources (Schlosser 1995; Fausch
et al. 2002), and the spatial arrangement of habitats
may influence population connectivity (Benda et al.
2004; Boughton et al. 2009; Young 2011).

Identifying size-specific patterns of habitat associ-
ations and spatial configurations of habitats within a
stream channel network is relevant to the conservation
of stream fishes. Such understanding is important for
assessing the potential impact of anthropogenic dis-
turbances on population dynamics and persistence
(Letcher et al. 2007; Xu et al. 2010a). Quantifying the
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effect of stream temperature and flow volume is
particularly relevant because they affect stream fishes
(Poff et al. 1997; Lyons et al. 2010) and will be
affected by climate change (Ficke et al. 2007). Brook
trout are presently confined to small, cold headwaters
in the central and southern parts of the native range in
eastern North America (Hudy et al. 2008), where
warmer and drier summers predicted by climate
change scenarios (Huntington et al. 2009) could have
a negative impact on population persistence.

Fish abundance or count data are frequently used to
understand species–habitat relationships. In this arti-
cle, ‘count(s)’ will be used as an index of ‘abundance’,
and the former will be consistently used hereafter.
Count data, characterised by positive integer values
and zero, are typically modelled using the Poisson
distribution. However, ecological data rarely conform
to the simple Poisson distribution, and analysis may be
improved by incorporating processes such as zero
inflation and overdispersion (Gelman & Hill 2007;
Zuur et al. 2009; Kéry 2010). Zero-inflated models are
a two-part model that simultaneously analyses (i)
habitat suitability for presence ⁄ absence and (ii) count,
given that the habitat is suitable. Zero-inflated models
are useful for modelling rare species, which inherently
have many 0’s in the data set (Wenger & Freeman
2008), and they are one approach to dealing with
overdispersion. However, they do not account for
overdispersion among positive count values, and the
combination of zero inflation and overdispersion may
further improve model fit (Gschlößl & Czado 2008;
Wenger & Freeman 2008; Zuur et al. 2009).

The primary objective of this study was to explain
the size-specific relationships between reach-scale

(50-m) brook trout counts and stream habitat features
using electrofishing data collected in two headwater
stream networks within two contrasting summers
(typical warm and wet vs. cool and very wet summer)
in Connecticut, USA. We fitted and compared Bayes-
ian mixed models with different complexities. In
addition, our spatially extensive and continuous sam-
pling of the entire headwater watersheds allowed us to
examine the size-specific spatial distributions along
stream channel networks. Our secondary objective was
then to assess such spatial patterns in an exploratory
manner, and we discuss the potential role of trout
movement based on this study and genetic studies of
brook trout in the same study streams (Kanno et al.
2011a,b).

Materials and methods

Study areas

The study was conducted in Jefferson Hill-Spruce
Brook (JHSB) and Kent Falls Brook (KFB) located in
north-western Connecticut, USA (Fig. 1). Both study
streams contained self-reproducing brook trout popu-
lations in a stream channel network predominantly
characterised by boulder (>256 mm), cobble (64–
256 mm) and pebble (16–63 mm) (Bain & Stevenson
1999). The JHSB watershed (drainage area:
14.56 km2) spanned approximately 7.7 km in stream
channel length. Common fish species observed in
JHSB included blacknose dace Rhinichthys atratulus,
longnose dace Rhinichthys cataractae and white
sucker Catostomus commersoni. Few stocked brook
trout were found in this study area (24 individuals in
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Fig. 1. Locations of Kent Falls Brook and Jefferson Hill-Spruce Brook in the State of Connecticut, north-eastern USA. Brook trout were
sampled in a spatially continuous manner throughout the entire stream channel networks shown. A black filled circle indicates the location of
Hartford.
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2008 and five individuals in 2009), and they were
reliably identified in thefield fromacombinationofbody
size and external characteristics which consistently
agreed with genetic assignment methods (Kanno et al.
2011a). Our analysis considered only wild brook trout.

The KFB watershed had a drainage area of
14.06 km2 and included approximately 4.4 km of
stream channel network (Fig. 1). Naturalised non-
native brown trout Salmo trutta were observed in the
most downstream portion of the study area, and
blacknose dace was common throughout KFB. A
permanent barrier (a series of natural waterfalls >5 m
in height) existed in a tributary to KFB (Fig. 1). No
brook trout were found above this barrier.

Field sampling

Summer brook trout count data were collected over
2 years. The study period covered two contrasting
summers in air temperature and precipitation patterns:
a typically warm, wet summer (2008) versus a cool and
very wet summer (2009). Weather data collected at
Hartford, located in mid-central Connecticut (Fig. 1),
illustrate summer characteristics experienced across the
state. The July mean air temperature in 2008 (24.2 �C)
approximated the long-term mean value of 23.3 �C,
and precipitation in July (160.24 mm) was higher than
the average of 91.44 mm. In 2009, the July mean air
temperature was 21.8 �C (1.5 �C cooler than the mean)
and precipitation in July (245.33 mm) nearly tripled
the monthly mean. Because stream temperature
becomes warmest in July in the region (unpublished
data) and much of electrofishing data were collected by
early August in both years, it was appropriate to use
July temperature and precipitation records to characte-
rise summer conditions. In this study, the summer of
2008 was considered typically warm and wet and 2009
was considered a cool and very wet summer.

Identical field protocols were used to collect data on
brook trout counts in JHSB and KFB in 2008 (July
28–August 22) and 2009 (July 14–August 12). Brook
trout were collected in a spatially continuous manner
throughout each stream network (Fig. 1). Prior to
collection, the study streams were travelled by foot,
and riparian trees were permanently marked at an
interval of roughly 50 m (each 50-m zone is called a
‘reach’ hereafter). JHSB contained 152 reaches, and
KFB had 86 reaches. Single-pass backpack electro-
fishing surveys (a pulsed DC waveform, 250–350 V;
Smith-Root model LR-24, Vancouver, WA, USA)
were conducted without blocknets. Trout counts were
recorded by each reach, and each fish was measured
for total length (±1 mm) and weight (±0.25–1.00 g
depending on fish size).

Habitat data were also collected in a spatially
continuous manner. Maximum depth (cm), mean

depth (cm), pool habitat area (m2) and nonpool habitat
area (m2) were measured in the field for each 50-m
reach during baseflow conditions during the fall of
2009 (August 24–November 10). Our objective was to
characterise spatial variation among reaches (i.e.,
upstream-to-downstream variation), rather than tem-
poral variation at different discharge levels. Thus, data
collection was avoided immediately after precipitation
events and US Geological Survey stream gauges in
nearby watersheds were monitored, so that data could
be collected at comparable stream discharge levels to
the extent possible. We considered that a single habitat
survey would adequately represent trout habitats
during the two consecutive years in which electro-
fishing was conducted, because severe flooding and
scouring events were not observed during the study
period and habitat characteristics remained similar
over time throughout the stream channel networks that
were featured by large mean particle sizes (Y. Kanno,
personal observation).

Maximum depth was the single deepest measure-
ment identified by wading through each reach with a
metre stick. Mean depth was calculated based on
measurements taken at three transects per reach (at
12.5, 25.0 and 37.5 m longitudinally); on each
transect, depth was measured at three points approx-
imately at 1 ⁄4, 1 ⁄2 and 3 ⁄4 distance across the wetted
channel width. Pool habitat was identified visually,
and it included various types of pool habitat such as
straight scour, lateral scour, plunge and step pools
(Bain & Stevenson 1999). Nonpool habitat primarily
consisted of riffles, as well as included rapids and
cascades. A total longitudinal length of pool habitat
was measured in each reach and was multiplied by
mean wetted channel width (also measured at three
transects per reach) to calculate pool habitat area. The
rest was designated as nonpool habitat area (i.e., total
habitat area minus pool habitat area).

Stream gradient was calculated for each reach as
elevation differences divided by waterway distances.
Upstream and downstream boundaries of each reach
were identified with a Juno ST Handheld GPS receiver
(2- to 5-m accuracy; Trimble Inc., Sunnyvale, CA,
USA) in early spring of 2009. Elevation values were
assigned to the reach boundaries from the 3-m (10-ft)
Digital Elevation Model GIS layer based on Light
Detection and Ranging (LiDaR) remote-sensed data
(available from the Center for Land Use Education and
Research, University of Connecticut).

Stream temperature was the only habitat variable
that was measured at a coarser scale than the 50-m
reach. Data were recorded between July 2008 and
December 2009 at an interval of every three reaches
(i.e., 150 m); we only used stream temperature data in
the last 2 weeks of July (i.e., late July) for analysis and
stream temperature for each reach was derived from
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the closest temperature logger. There was little
longitudinal variation in stream temperature at the
scale of 150 m (See Appendix S1 for spatial thermal
patterns). Stream temperature was recorded every hour
by HOBO temperature data loggers (Model U22-001;
Onset Computer Inc., Bourne, MA, USA).

Data assessment and preparation

Our objective was to examine the relationships
between reach-scale trout counts and stream habitat
features by using mixed models that analysed all
size classes in a single analysis in each year. Four size
classes were used in this study (Size 1: £80 mm, Size
2: 81–140 mm, Size 3: 141–190 mm and Size 4:
‡191 mm) based on length–frequency data. Size 1 was
reliably considered to be young-of-the-year (YOY)
trout, but age determination is not practically possible
for larger size classes for brook trout (Xu et al.
2010b). Each sampling year was analysed separately
to identify year-specific patterns that may be attributed
to the distinct weather patterns between 2 years, and to
decrease the computation time.

Count data from JHSB and KFB were combined for
analysis because variation in counts was small between
the two streams. Using the lmer function (with the
Poisson family) in R (RDevelopment Core Team 2010)
specified as count � (1|stream ⁄ reach) + (1|size class),
variance (or random effects) attributed to reaches
(0.473) and size classes (0.539) was more than a
magnitude larger than that of streams (0.023). Besides,
counts were not statistically significant between the two
study sites for six of the possible 8 year · size class
combinations (2 years · 4 size classes) after the Bon-
ferroni correction (t-test: P-value > 0.006). Reach-
scale counts were higher in KFB for Size 1 in 2008
(t = )4.33: P-value < 0.001) and Size 3 in 2009
(t = )2.96: P-value = 0.004). All habitat variables,
except stream temperature, were not statistically sig-
nificant between the two study sites after the Bonferroni
correction (t-test: P-value > 0.008) (Table 1). Stream
temperature was colder in JHSB than in KFB in both
summers. Still, merging data from the two study sites
was appropriate from an ecological perspective because
higher count values, when present, were observed in the
warmer KFB: this pattern was contrary to the expec-
tation that brook trout counts would be higher in colder
reaches and it should not inflate (actually it should
deflate) the type-I error rate when testing the direction
of correlation (negative) between stream temperature
and trout counts. It should also be noted that the vast
majority of reaches were thermally suitable for brook
trout in both study streams (Table 1) (Hartman & Cox
2008; Robinson et al. 2010).

Our preliminary analysis identified potential outliers
in reach-scale habitat variables. Therefore, the range of

values that included 95% of observations were iden-
tified for each habitat variable, and those observations
smaller than the 2.5 percentiles were fixed at the 2.5
percentile value and those larger than 97.5 percentiles
were fixed at the 97.5 percentile value. Then, each
habitat variable was standardised by subtracting its
mean and dividing by two times its standard deviation
(Gelman & Hill 2007), and standardised values were
used throughout subsequent statistical analyses. This
procedure helped the model convergence as did the
inclusion of linear and quadratic terms for each habitat
variable in our models (see below). No single pair of
standardised habitat variables was strongly correlated
with one another (Pearson’s correlation coefficient:
r < 0.7).

Model development and comparison

Count data were analysed by fitting and comparing
four different distribution models in each year. They
were a Poisson distribution, overdispersed Poisson
distribution (ODP), zero-inflated Poisson (ZIP)
distribution and zero-inflated overdispersed Poisson
(ZIODP) distribution. In these models, size class was
modelled as a random effect because all size classes
were considered to respond similarly to at least some
habitat covariates (e.g., stream temperature); such
nonindependence is better modelled as a random
rather than a fixed effect (See Appendix S2 for the R
code). However, treating size class as a fixed effect
would also have been justifiable because all potential
size classes were included in the analysis. Perhaps, the
biggest disadvantage of specifying size class as a
random effect in this study was increased computa-
tional time.

The Poisson distribution was our ‘null’ model and
its distribution was determined by the same mean and
variance (k). Following the notation of Gelman & Hill
(2007) for mixed models, the Poisson model was as
follows:

Table 1. Habitat characteristics in study sites. The first four habitat
variables were collected under baseflow condition in fall of 2009.

Variable

Jefferson Hill-Spruce
Brook Kent Falls Brook

Median
5th–95th
percentiles Median

5th–95th
percentiles

Maximum depth (cm) 52.0 31.1–96.4 56.0 29.5–113.25
Mean depth (cm) 16.8 8.9–34.7 19.2 10.8–32.6
Pool area (m2) 35.4 0.0–120.5 39.2 2.6–153.5
Nonpool area (m2) 170.2 68.8–290.4 176.1 95.7–315.2
Gradient (%) 3.0 0.6–8.2 3.5 1.2–8.6
Mean temperature (�C)

2008 Late July 18.7 17.8–19.2 19.0 18.0–21.0
2009 Late July 17.2 16.5–17.5 18.4 17.7–20.2

Bayesian modelling of brook trout abundance

407



Ci � PoissonðkiÞ ð1Þ

logðkiÞ ¼ as½i� þ bs½i�Xi ð2Þ

where Ci represents the trout count at observation i
(note that we define i = 1, 2, …, 952 observations; i.e.,
238 reaches · 4 size classes for each year), as[i]
denotes an intercept term specific to the size class s
(s = 1, 2, 3, 4) at observation i, bs[i] is a vector of size-
class-specific regression coefficients associated with
habitat variables, and Xi is a vector of reach-scale
habitat variables (i.e., maximum depth, mean depth,
pool habitat area, nonpool habitat area, stream gradient
and late July mean stream temperature). Each habitat
variable included linear and quadratic terms. The
Poisson process model and all subsequent models
were ‘varying-intercept, varying-slope’ models (Gel-
man & Hill 2007): that is, intercept (as[i]) and slopes
(bs[i]) were allowed to vary among size classes.

The ODP model is an extension of the Poisson
model that allows for overdispersion. It is similar to
the negative binomial distribution that specifies an
overdispersion term in addition to the Poisson mean
(Zuur et al. 2009; Kéry 2010). Following Kéry (2010),
overdispersion was added as a normally distributed
random effect (ei) in a Poisson model, instead of
specifying a negative binomial model directly. We
fitted the following ODP model:

Ci � PoissonðkiÞ ð3Þ

logðkiÞ ¼ as½i� þ bs½i�Xi þ ei ð4Þ

The ZIP and ZIODP distributions both account for
zero inflation in data (i.e., excessive amount of zeros
than what would be expected for the given distribution).
Excessive zeros can arise in ecological data because of
many reasons including imperfect detection, observer
errors and absence of organisms at seemingly suitable
areas (Zuur et al. 2009). The two distributions were
considered in this study because all size classes in both
years were characterised with an excessive number of
zero counts, more than expected under the Poisson
distribution given the mean trout count per reach
(Table 2). The ZIP and ZIODP distributions are ‘two-
part models’ (Zuur et al. 2009; Kéry 2010) because two
different processes are considered sequentially. The
ZIP model we fitted was as follows:

wi � Bernoulliðws½i�Þ ð5Þ

Ci � Poissonðwi � kiÞ ð6Þ

logðkiÞ ¼ as½i� þ bs½i�Xi ð7Þ

where wi is a binary value (1 if brook trout are present,
0 otherwise) determined by the size-specific probabil-

ity (ws[i]) that the stream reach at observation i is
suitable for brook trout. For those observations with
wi = 1, the Poisson process determines brook trout
count (Ci) based on reach-scale habitat features [note
that Eq. (7) is equal to Eq. (2) in the Poisson model].
Importantly, in the ZIP distribution, zero counts arise
either when wi = 0, or by the Poisson process.

Finally, we extended the ZIP model into the ZIODP
model by adding the overdispersion term (ei), identical
to the approach above to extend the Poisson model
into the ODP model. Thus, the ZIODP model was
described as

wi � Bernoulliðws½i�Þ ð8Þ

Ci � Poisson ðwi � kiÞ ð9Þ

logðkiÞ ¼ as½i� þ bs½i�Xi þ ei ð10Þ

The Bayesian models were fitted using Markov
chain Monte Carlo (MCMC) methods in WinBUGS
1.4 (Spiegelhalter et al. 2003) called from R with the
R2WinBUGS package (Sturtz et al. 2005). ‘Vague’
priors were used throughout the Bayesian models in
order to represent the lack of previous knowledge on
habitat effects on trout counts in our study streams
(See Appendix S2 for the R code for the ZIODP
model). Thus, our models should provide outputs
similar to a frequentist approach (the maximum-
likelihood method), and our use of the Bayesian
approach was pragmatic; WinBUGS provides a flex-
ible platform to fit a variety of related models.
Marginal posterior distributions of model parameters
were estimated by 50,000 iterations of three chains
after discarding 20,000 burn-in iterations. To reduce
autocorrelation in the sample, only every 90th iteration
was retained, resulting in a total sample size of 1000
points from the posterior distribution. Model conver-
gence was checked by visually examining plots of the
MCMC chains for good mixture and using the Brooks
and Gelman (1998) diagnostic. This statistic compares

Table 2. Summary of brook trout count data in 238 reaches in Jefferson
Hill-Spruce Brook and Kent Falls Brook combined. Expected number of
reaches with zero trout counts is based on the Poisson distribution using the
mean count of trout per reach with 100,000 iterations.

Size

2008 2009

Mean
count
per
reach

Observed
no. of
reaches
with 0
count

Expected
no. of
reaches
with 0
count

Mean
count
per reach

Observed
no. of
reaches
with 0
count

Expected
no. of
reached
with 0
count

Size 1 2.0 91 34 3.2 55 11
Size 2 5.9 13 1 2.6 47 19
Size 3 2.3 62 25 2.4 51 23
Size 4 0.5 173 160 0.7 150 125
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variance within and between chains, and a model was
considered to have converged when the value was
<1.1 for all model parameters (Gelman & Hill 2007).

The predictive ability of Bayesian models was
compared in two ways. First, the Poisson mean values
of model-predicted counts at 50-m reaches were
plotted against observed counts, and the adequacy of
the models was assessed visually. Second, the Bayes-
ian P-value was calculated for each model (Kéry
2010). This statistic compares the lack of model fit for
the observed data set with that for an ‘ideal’ data set
simulated by the model. The Bayesian P-value ranges
from 0 and 1, and a good model has a value around
0.5. The model fit decreases as the Bayesian P-value
approaches 0 or 1. The best model was identified using
these two criteria, and we report coefficients of habitat
covariates in the best Bayesian model for each year
(ZIODP model). Effect of covariates was considered
statistically significant when the 95% credible interval
did not overlap with zero.

Because stream reaches were sampled in a spatially
continuous manner, attempting to directly model
spatial autocorrelation in residuals could have been a
potential avenue to explore in our models. However,
this approach was not pursued in the current study for
several reasons. First, spatial autocorrelation in resid-
uals, based on the best model (i.e., ZIODP model),
was assessed by using the Moran’s I autocorrelation
coefficient (see Appendix S3 for details). Evidence of
spatial autocorrelation was not consistently observed
among size classes and years, and the result was also
scale-dependent. Second, some model structures we
explored accounted for overdispersion, and spatial
autocorrelation is known to be effectively dealt with in
such a manner (Gschlößl & Czado 2008). Thus,
autocorrelation was partly and indirectly accounted for
when the overdispersion term was included. Third, the
inclusion of spatial random effects might have
produced a better descriptive model, but such a model
cannot be used for predictions for other streams. One
cannot extrapolate the model outside the spatial extent
of sampling areas when spatial random effects are
included. Finally, the potential issue of not modelling
spatial random effects is to derive regression coeffi-
cient estimates that have a more precise credible
interval than when the effects are accounted for. Thus,
the exclusion of such effects may result in spuriously
precise estimates than they should be due to the
violation of the data independence assumption, but it
should not bias point estimates strongly.

Size-specific spatial distributions

A correlation matrix was constructed to examine the
correlation of reach-scale counts among different size
classes. The correlation matrix was designed to

include Pearson’s correlation coefficient (r) values in
the upper panels and scatterplots in the lower panels.
Statistical significance of Pearson’s correlation (two-
sided) was tested with a = 0.05 corrected by the
Bonferroni method (a = 0.05 ⁄6 = 0.008 for each
year). Size-specific distributions of trout counts were
mapped by each 50-m reach in each summer, similar
in style to Ganio et al. (2005) and Gresswell et al.
(2006).

Results

Field sampling

Both study areas were typical of small headwater
streams characterised with high to medium stream
gradient (Table 1). Mean stream wetted width was
4.8 m in KFB and 4.3 m in JHSB. Mean stream
temperature in late July was about 1.5 �C colder in
2009 (17.4 �C) compared to 2008 (18.8 �C), which
followed air temperature patterns between the two
summers. Maps of longitudinal habitat profiles can be
found in Appendix S1 (stream temperature) and
Appendix S4 (other habitat variables).

A total of 1437 individuals were collected in JHSB
and 1259 individuals were collected in KFB in the
2008 electrofishing survey. In 2009, we collected 1128
individuals in JHSB, and 886 individuals were col-
lected in KFB. Size distributions of brook trout differed
slightly between the two survey years (Table 2). Trout
of Size 2 (81–140 mm) were the most abundant class in
2008, but Size 1 (£80 mm) was the most abundant
class in 2009. Few trout reached over 190 mm (Size 4)
in the two streams in either year (Table 2).

Model development and comparison

The convergence of the Bayesian mixed models was
assured by well-mixed MCMC chains, and the Brooks
and Gelman diagnostic <1.1 for all model parameters.
The ODP and ZIODP models were nearly comparable
in their predictive abilities. The Bayesian P-values for
the ODP models were 0.487 in 2008 and 0.499 in
2009, and those for the ZIODP models were 0.508 in
2008 and 0.486 in 2009. Poisson and ZIP models were
fitted poorly to our data with their Bayesian P-
values < 0.001 in both years. When model-predicted
reach-scale trout counts were plotted against observed
counts, the ODP and ZIODP models showed excellent
model fits and observations were aligned near the 1:1
line (Fig. 2 for 2008 data. 2009 data now shown). In
addition, zero-inflated models (ZIP and ZIODP)
successfully predicted low trout counts when no
individuals were actually observed in a reach (when
x-axis = 0 on Fig. 2). Taken together, we considered
that the ZIODP models were the best models and we
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report model coefficients of these models in the
following subsection.

Covariate effects on trout counts

The effect of habitat covariates was not always
consistent among size classes and years, as summar-
ised in Tables 3 and 4 and Figs 3 and 4. There were
nonlinear relationships between trout counts and late
July stream temperature in all size classes in both
years, except that the quadratic term for stream
temperature was not statistically significant for Size
1 in 2008 (Table 3). The coefficients for the linear
terms for stream temperature were significantly neg-
ative for two small size classes in the typically warm
and wet year of 2008 (Table 3 and Fig. 3). On the
contrary, the coefficients for the linear terms for stream
temperature were significantly positive for all size

classes in the cool and very wet summer of 2009
(Table 4 and Fig. 4). These results suggested that
increased stream temperature exerted stronger negative
influence on trout counts in a warmer summer.

A consistent pattern between 2008 and 2009 was
the importance of (deep) pool habitat. Counts
increased significantly with area of pool habitat for
all size classes in both years, except Size 1 in 2008
(Table 3 and Fig. 3). In both years, maximum depth
was consistently important for the two large size
classes, particularly Size 4 (Tables 3 and 4; Figs 3
and 4). The linear terms of mean depth were
significantly negatively correlated with trout counts
of Sizes 1–3 in 2009 (but not in 2008), indicating that
brook trout were more abundant in upstream reaches
than in downstream reaches in the cool and very wet
summer. The linear terms for area of nonpool habitat
(e.g., riffles) were significantly negative for Size 4 in
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Fig. 2. Observed versus expected brook trout counts using four different models in 2008. Expected counts represent the Poisson means, and
points were jittered for graphical clarity. ODP, overdispersed Poisson models; ZIP, zero-inflated Poisson models; ZIODP, zero-inflated
overdispersed Poisson models.
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2008 (Table 3) and Sizes 1–3 in 2009 (Table 4),
although this result was not immediately intuitive.

Stream gradient affected size classes differently in
both years (Tables 3 and 4). Brook trout of the largest
size class (Size 4) were more abundant in stream
reaches with lower gradient in both years. In contrast,
significant positive relationships (with negative qua-
dratic terms) existed for Size 1 in 2008 (wet year)
(Table 3) and Sizes 2–3 in 2009 (cool and very wet
year) (Table 4).

Probabilities of stream reach suitability varied
among size classes and followed their count patterns
observed in the field (Tables 3 and 4). More abundant
size classes had higher probabilities of reach suitabil-
ity, with Size 2 having the highest probability in 2008
(0.99) (Table 3) and Size 3 having the highest value in
2009 (0.97) (Table 4). The probability of reach

suitability was lowest for Size 1 trout in 2008 (0.76)
and Size 4 in 2009 (0.86).

Size-specific spatial distributions

There was no correlation between Size 1 and Size 4
counts in 2008 (r = )0.06, P-value = 0.373: Fig. 5) or
in 2009 (r = 0.12, P-value = 0.057: Fig. 6). In 2008,
counts of Size 1 and Size 3 trout were not correlated
after the Bonferroni correction (r = 0.14, P-va-
lue = 0.029: Fig. 5). In 2009, counts of Size 2 and
Size 4 were also not correlated (r = 0.06, P-
value = 0.348: Fig. 6). Counts of all other pairs of
size classes were positively correlated with each other
(P-value < 0.008: Figs 5 and 6).

When reach-scale counts were mapped and visually
assessed for each size class, the spatial distribution of
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Fig. 3. Effects of select stream habitat features on size-specific brook trout counts using the ZIODP model in 2008. Size-specific curves were
derived by using the mean regression coefficient values of linear and quadratic terms for the habitat variable of interest and fixing all other
habitat variables to their mean values. The x-axis represents approximately the 5th–95th percentile range for the habitat variable.
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Size 4 trout differed from those of other size classes
(Fig. 7 and Appendix S5). For example, three small
size classes were found ubiquitously within the stream
channel network in JHSB in 2009 (Fig. 7). In contrast,
Size 4 was rare in tributaries and uppermost headwa-
ters (Segments 1–3 on Fig. 7), where the other three
size classes were common. The distribution pattern of
Size 1 versus Size 4 trout was the most contrasting: for
example, a stream segment with the highest counts of
Size 4 (Segment 4 on Fig. 7) was among the least
occupied habitat for Size 1.

Discussion

Understanding the effect of stream temperature and
flow volume on headwater stream salmonids is
important in the face of anticipated climate change.

This study documented species–habitat patterns that
are consistent among size classes (e.g., stream tem-
perature) or that vary among size classes (e.g.,
maximum depth), by taking advantage of (i) a spatially
extensive survey of animals and their habitat in select
headwater stream networks, (ii) a statistical method
that incorporated variation among size classes (i.e.,
mixed models) and accounted for processes beyond
the Poisson distribution (i.e., zero inflation and
overdispersion) and (iii) data sets from two distinct
summers.

Temperature effect on trout counts

Fewer individuals of the two small size classes were
found in warmer reaches in the typically warm and wet
summer of 2008, but this pattern was not observed in
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Fig. 4. Effects of select stream habitat features on size-specific brook trout counts using the ZIODP model in 2009. Size-specific curves were
derived by using the mean regression coefficient values of linear and quadratic terms for the habitat variable of interest and fixing all other
habitat variables to their mean values. The x-axis represents approximately the 5th–95th percentile range for the habitat variable.
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the cool and very wet summer of 2009. Late July mean
stream temperature was colder in 2009 (17.4 �C) than
in 2008 (18.8 �C), and this narrow stream temperature
difference made sizeable differences in thermal effect
on among-reach variation in brook trout counts
between 2 years. A similar range of stream tempera-
ture differences (1–2 �C) have been reported to affect
the survival (Xu et al. 2010a) and growth (Xu et al.
2010b) of brook trout during summer in the study
region. Thermal effects on counts in this study are also
congruent with known temperature ranges for this
species; metabolic rates of brook trout declined
sharply above 20 �C in a laboratory setting (Hartman
& Cox 2008), and wild populations appear to suffer
when stream temperatures exceed 20 �C for an
extended period in summer (Stranko et al. 2008;
Robinson et al. 2010). The observed sensitivity to
thermal effects, coupled with the fact that our study
streams lie near the upper thermal limit for brook trout,
signals evident vulnerability of this species at the
southern and central range of distribution under
predicted climate change.

Stream temperature was not statistically important
for the two larger size classes in 2008. We do not
consider that stream temperature was not as important
for larger trout. In fact, larger individuals of given fish

species are typically more susceptible to temperature
elevation than smaller individuals because of their
higher metabolic demands and lower thermal prefer-
ences (Hartman & Cox 2008). Field studies provide
congruent results and larger brook trout individuals
(>age 2+) are reported to suffer higher mortality rates
in warmer summers (Drake & Taylor 1996; Robinson
et al. 2010). This pattern may be attributed to the
ability of smaller trout to exploit physically confined
microhabitats with groundwater discharge (Drake &
Taylor 1996; Biro 1998) that are inaccessible for
larger trout. Our finding probably reflects the over-
whelming importance of deep pool habitats for larger
brook trout (see below), which might have masked the
influence of stream temperature.

Flow volume effect on trout counts

In both study summers, the presence of pool habitat
was the primary factor influencing brook trout counts
across size classes (except Size 1 in 2008) in our
headwater streams. Pool habitat has been identified as
preferred habitats for adult and juvenile stream
salmonids owing to high efficiency in drift feeding
(Nakano et al. 1998; Gowan & Fausch 2002). Eber-
sole et al. (2009) similarly reported that there was a
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Fig. 5. Correlation matrix of brook trout counts among size classes in 2008. Pearson’s correlation coefficient (r) is shown in the upper panels,
and pairwise counts are shown in the lower panels. Points were jittered for graphical clarity.
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positive relationship between pool area and juvenile
coho salmon Oncorhynchus kisutch in the upper
headwaters in a coastal Oregon basin. Reeves et al.
(2011) found that pool habitats were important for
three species of salmonids in another coastal Oregon
stream, particularly when stream flow decreased.

Although the amount of pool habitats is important
for all size classes, stream depth was a critical feature
for larger size classes, particularly Size 4. Depth has
been identified as cover for large trout to avoid
terrestrial ⁄ avian predators (Sotiropoulos et al. 2006).
Not surprisingly, the largest trout occupied the deepest
pools in our small headwater streams. Plus, there was
some indication that stream depth affected the counts
of Sizes 1–3 as well. Specifically, mean depth and
counts of Sizes 1–3 were significantly negatively
correlated in the exceptionally wet summer of 2009,
but the mean depth did not affect any size class in
2008. This observation suggests that stream depth was
not a limiting factor for brook trout under the higher
flow condition, which likely made tributaries and the
uppermost headwaters more hospitable for Sizes 1–3
(but still not for Size 4) in 2009 than an average-flow
summer.

Size-specific influence of flow volume on trout
counts suggests that summer drought, which is

expected to increase in frequency in the study region
under climate change (Huntington et al. 2009), might
affect size classes differently. Xu et al. (2010a)
reported that summer drought reduced the survival
of large brook trout (>135 mm) but not of smaller
brook trout in small tributaries in Massachusetts, while
elevated stream temperatures uniformly affected all
size classes. In high-gradient small headwater streams,
riffle habitats typically dry up first under low flow
condition, resulting in a chain of isolated pool habitats
(Hakala & Hartman 2004). Under such a condition,
large trout may suffer higher mortality because
shallow depth does not provide cover (Sotiropoulos
et al. 2006) or because the quantity of drifting macro-
invertebrates is not sufficient to meet their metabolic
demands (Hakala & Hartman 2004; Hartman & Cox
2008). Evidently, physical space is the limiting factor
for large brook trout individuals during low flow
condition in headwaters. Large brook trout individuals
have high fecundity, and thus, the greater negative
impact on large individuals under drought condition
could have important implications in population
dynamics and persistence (Letcher et al. 2007).

Stream gradient affected size classes differently, and
this result appears to be due partly to its influence on
stream geomorphology. Specifically, some of the
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Bayesian modelling of brook trout abundance

415



deepest and largest pools were located in low-gradient
reaches in the study areas, which may explain the
negative correlation between stream gradient and trout
counts of Size 4 in both summers. The effect of stream
gradient was not consistent between years for other
size classes, with stream gradient positively correlated
with counts of Size 1 (only in 2008) and Sizes 2 and 3
(only in 2009). The inconsistency might be due to the
interactions between stream gradient and stream
discharge, which might have created heterogeneous
microhabitat conditions between the 2 years of differ-
ent precipitation patterns. It is reasonable to assume
that habitat suitability of stream reaches differed
between the two summers because of different
discharge patterns. Gowan & Fausch (2002) observed
that brook trout shifted their microhabitat locations in
response to changes in stream discharge levels during
summer in a non-native Rocky Mountain stream.

The role of trout movement

Our exploratory analysis via correlation matrices and
spatial habitat mapping identified that ‘hotspots’ (i.e.,
reaches with high trout counts) may differ among size
classes, particularly between Size 1 versus Size 4.
Similar to our finding, previous studies documented

size-specific patterns of spatial distributions, in which
larger or older individuals are more common in the
mainstem habitats and smaller or younger individuals
become dominant in tributaries (Petty et al. 2005;
Young 2011). Gresswell et al. (2006) reported that
spatial patterns of cutthroat trout Oncorhynchus clarkii
distributions also shifted among years in an Oregon
headwater stream network. The spatial pattern
observed in this study suggested that trout movement
is a potentially important mechanism in exploiting
spatially patchy habitat resources in the ‘riverscape’
(Fausch et al. 2002) by the time an individual reaches
the largest size class.

However, genetic data based on Size 2 brook trout
were indicative of limited trout movement at the
population level in the study areas (Kanno et al.
2011a,b). That is, full-sibs that share both parents were
mostly distributed close to each other in a spatially
clustered manner (Kanno et al. 2011a), and a percep-
tible isolation-by-distance pattern was observed in
Jefferson Hill, Spruce and KFB individually (Kanno
et al. 2011b). How do we reconcile these observations?

A plausible explanation may be that some individ-
uals, particularly large ones, do move among stream
reaches through their life stages, but others are rather
sedentary (Gowan et al. 1994; Skalski & Gilliam

Fig. 7. Size-specific electrofishing counts of brook trout per 50-m reach in 2009 summer in Jefferson Hill-Spruce Brook. Each vertical bar
represents the number of brook trout individuals captured in a reach, and its values are categorised by different colours and bar heights. Four
example segments are highlighted to indicate the variation in counts among size classes, particularly between Size 1 and Size 4.
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2000; Rodrı́guez 2002). Positive correlation of reach-
scale counts was observed among the three small size
classes in both summers, and their spatial distributions
were qualitatively similar (but counts differed). In our
study sites, both males and females of approximately
100 mm in total length (i.e., Size 2) were reproduc-
tively mature (i.e., expressing milt or eggs) during fall
(Y. Kanno, personal observation), and these individ-
uals may be able to complete their life cycle and
reproduce successfully in a spatially limited area (e.g.,
even within a tributary). Hudy et al. (2010) reported
that genetically inferred parents and their offspring
were often collected in a restricted area in a Virginia
headwater brook trout population. Thus, the coexis-
tence of movers and nonmovers may have resulted in
the perceptible spatial population structure.

Alternatively, spatial configurations of heteroge-
neous habitat types may be such that brook trout can
find habitat patches required for ontogenetic shift
within a short movement distance. Brook trout of Size
4 were the least common size class in the study areas,
but they were still found throughout the stream
channel network, except in small tributaries (see
Fig. 7). Typical of low-order streams in the region,
our study streams were characterised with series of
alternating macrohabitat types (i.e., pool–riffle
sequences with cascades and steps) in predominantly
forested watersheds. Trout movement may be possibly
limited when the quality and diversity of stream
habitats is high (Bélanger & Rodrı́guez 2002; Olsson
et al. 2006). We had studied the movement of large
brook trout (>150 mm: Size 3 and 4) within a single
field season (early summer to fall) using a mark–
recapture technique; trout were sedentary during the
summer, and some moved upstream (maximum
distance = 2 km) in fall for spawning but many were
still recaptured in the same reaches throughout the
study period (Kanno et al. 2011b). Clearly, measuring
and quantifying stream habitat ‘beyond reaches’
(Fausch et al. 2002) should be important for under-
standing if, why and how much distance stream fishes
move as they grow.

Statistical model development

Model comparison indicated that our count data, like
other ecological data, were characterised by overdi-
spersion. Overdispersion in count data can arise
through either excessive number of zeros, excessive
dispersion in positive values or both (Zuur et al.
2009). In this study, the ODP distribution was a better
fit than the ZIP distribution, and it was nearly
comparable to the ZIODP model. Thus, although our
data set clearly had many zeros, the ODP model was
capable of accounting for much of overdispersion.
This observation is likely because the mean trout

counts per reach were small (0.5–5.9: Table 2) and
close to zero. If a data set contains many zeros
and positive values were much larger than zero and
overdispersed, the ZIODP models should noticeably
improve model fit relative to the ODP models.

The spatially continuous sampling of brook trout and
habitat was helpful in statistical analysis because it
avoided the need to stratify sampling among stream
reaches. A traditional sampling design might have been
to identify obvious habitat groups in the study water-
sheds (e.g., mainstem versus tributaries) and randomly
sample a subset of stream reaches within habitat groups
(i.e., stratified random sampling). However, delineating
such groups in a continuous habitat is not straightfor-
ward and introduces subjective judgment, potentially
leading to less robust statistical models. We recognise
resource and time constraints on conducting spatially
continuous sampling. But, as Fausch et al. (2002)
argued, collecting data at a ‘coarse’ spatial grain (e.g.,
stream habitat features at each 50-m reach) in a
spatially extensive fashion (e.g., spanning entire head-
water channel networks) can lead to better ecological
understanding of riverine organisms.

This study focused on a single season (i.e., late
summer) in 2 years, and our inferences are likely to be
season-specific. Temperate streams change seasonally
in important features including stream temperature and
flow volume, and lotic organisms have adapted to
predictable seasonality. Stream salmonids are known
to select different habitats seasonally (Bardonnet &
Baglinière 2000; Gowan & Fausch 2002; Reeves et al.
2011). Brook trout use tributaries and uppermost
headwaters for spawning during fall (Johnson &
Dropkin 1996; Petty et al. 2005), and we also
observed upstream movement by some large brook
trout (>150 mm) into tributaries and uppermost head-
waters during fall in the study sites (Kanno et al.
2011b). Our sampling design was spatially extensive
but temporally limited, and analysis across seasons
will be required to understand the species–habitat
relationships fully (e.g., Xu et al. 2010b).

Conclusion

This study quantified size-specific relationships
between reach-scale brook trout counts and stream
habitat features in two headwater stream networks
within two contrasting summers. The primary objec-
tive was to understand the influence of local-scale (i.e.,
reach-scale) habitat features on brook trout counts;
however, it should be stressed that spatially extensive
sampling of trout and habitat led to some insights into
dispersal that might be occurring beyond the local
scale. This study represents a successful effort to study
stream fishes by collecting spatially continuous data
across life stages. Our field sampling literally covered
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the potential habitat of the entire local populations that
occupied the headwater channel networks and pro-
vided unique insights into species–habitat relation-
ships of a stream fish. As more and more stream
habitats become fragmented because of anthropogenic
activities, including global climate change, under-
standing small coldwater fish populations will guide
conservation actions better.
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Kent Falls Brook (KFB) in 2008 and 2009. Values
indicate the mean stream temperature (�C) in late July.

Appendix S2. R code to initiate WinBUGS analysis
of the best Bayesian mixed model (i.e., ZIODP
model).

Appendix S3. Summary of Moran’s I calculation to
assess the spatial autocorrelation in residuals of the
best Bayesian mixed model (i.e., ZIODP model).
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for a 50-m stream reach.

Appendix S5. Size-specific electrofishing counts of
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Jefferson Hill-Spruce Brook, (b) 2008 summer in Kent
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