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[1] The cascade of uncertainty that underscores climate impact assessments of regional
hydrology undermines their value for long-term water resources planning and management.
This study presents a statistical framework that quantifies and propagates the uncertainties
of hydrologic model response through projections of future streamflow under climate
change. Different sources of hydrologic model uncertainty are accounted for using Bayesian
modeling. The distribution of model residuals is formally characterized to quantify
predictive skill, and Markov chain Monte Carlo sampling is used to infer the posterior
distributions of both hydrologic and error model parameters. Parameter and residual error
uncertainties are integrated to develop reliable prediction intervals for streamflow estimates.
The Bayesian hydrologic modeling framework is then extended to a climate change impact
assessment. Ensembles of baseline and future climate are downscaled from global
circulation models and are used to drive simulations of streamflow over parameters drawn
from the posterior space. Time series of streamflow statistics are calculated from baseline
and future ensembles of simulated flows. Uncertainties in hydrologic model response,
sampling error, and the range of future climate projections are integrated to help determine
the level of confidence associated with hydrologic alteration between baseline and future
climate regimes. A case study is conducted on the White River in Vermont, USA. Results
indicate that the framework can be used to present a reliable depiction of the range of
hydrologic alterations that may occur in the future.
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1. Introduction
[2] The threat of nonstationary hydrology has motivated

significant research efforts investigating the potential impacts
of climate change on regional hydrology and implications for
local water resource systems. Despite these efforts, uncer-
tainty in both future climate conditions and regional hydro-
logic response confounds the interpretation of results and
diminishes their utility in water resources planning [Lopez
et al., 2009]. A systematic approach is required to account
for the uncertainty in hydrologic impact assessments so that
decision makers can consider adaptation strategies contex-
tualized by the uncertainty in design statistics critical to the
decision-making process. In this paper we propose a statisti-
cal framework that quantifies several sources of uncertainty
in long-range projections of hydrologic alteration, including
uncertainties in future climate, hydrologic model predictive

skill, model parameterization, and sampling error of esti-
mated hydrologic statistics. These uncertainties are integrated
to develop a probabilistic description of potential alterations
to regional hydrology useful for water resources planning.

[3] In the vast majority of studies, hydrologic alteration
under climate change is assessed using future climate sce-
narios, as simulated by global circulation models (GCMs),
that are downscaled to a location of interest and used to
force a regional hydrologic model. The simulated hydro-
logic response is then compared to a baseline response based
on historic climate data, and measures of hydrologic altera-
tion are computed [Gleick, 1986]. There are multiple sources
of uncertainty that degrade this process, including those
associated with the GCMs (i.e., inaccuracy at subcontinental
scales, inconsistencies across models, parameterization,
uncertain boundary conditions, difficulty in assessing predic-
tive skill), the ambiguity between different downscaling
techniques, and the hydrologic model (i.e., model structure,
input and output data used for calibration, parameterization)
[Wood et al., 1997]. GCM accuracy and consistency, along
with the choice of downscaling methodology, are considered
to be the primary sources of uncertainty and have garnered
significant research attention [Räisänen and Palmer, 2001;
Palmer and Räisänen, 2002; Piani et al., 2005; Stainforth
et al., 2005; Fowler et al., 2007; Stainforth et al., 2007a;
Lopez et al., 2009]. Errors associated with the hydrologic
model, however, have received less emphasis in studies
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considering hydrologic alteration under climate change. In
the majority of climate change impact assessments, hydro-
logic simulations of future climate are treated largely as
deterministic output that can be used to directly identify
hydrologic alterations [Chao, 1999; Hamlet and Lettenmaier,
1999; Lettenmaier et al., 1999; Nijssen et al., 2001]. Some
studies have explored the impacts of hydrologic model uncer-
tainty on climate impact assessment results, but they often
only investigate uncertainties in parameterization [Arnell,
1999; Cameron et al., 2001; Wilby, 2005], model structure
[Boorman and Sefton, 1997; Jiang et al., 2007], or a combi-
nation of both [Wilby and Harris, 2006; Kay et al., 2009;
Prudhomme and Davies, 2009a, 2009b], and almost never
formally account for prediction error, which can often domi-
nate total model uncertainty [Stedinger et al., 2008].

[4] While parameter and structural errors are important
components of the total uncertainty in hydrologic model
results, accounting for these uncertainties alone may not guar-
antee reliable predictive bounds for streamflow estimates. For
a watershed exhibiting significant heterogeneity or unexplain-
able behavior, many types of hydrologic response may be
challenging to simulate even with an ensemble of model
structures or parameterizations. The assumption that a set of
hydrologic models with multiple parameterizations is com-
plete enough to reliably bound true hydrologic response is
difficult to verify [Renard et al., 2010]. This is especially true
if the models struggle to reproduce certain aspects of the
observed streamflow and exhibit errors that vary across the
magnitude and timing of hydrologic responses. To generate
reliable predictive bounds, a formal quantification of residual
error is needed. If predictive uncertainty associated with the
hydrologic model is not formally addressed and propagated
through climate change impact analyses, claims of hydrologic
alteration from such studies can be overstated and misguide
water resources decision makers.

[5] In a related line of research, predictive uncertainty in
hydrologic modeling has been extensively explored and
mature methods for quantifying error have been developed.
Early efforts focused on pseudo-Bayesian methods [Beven
and Binley, 1992; Beven and Freer, 2001], and later more
formal Bayesian techniques emerged to properly account
for both residual and parameter uncertainties [Bates and
Campbell, 2001; Marshall et al., 2004; Stedinger et al.,
2008; Schoups and Vrugt, 2010]. Further studies have dis-
sected model error into its component parts, investigating
the impacts of uncertain input and response data on model
predictions [Kavetski et al., 2006a, 2006b; Thyer et al.,
2009; Renard et al., 2010]. Other innovative approaches
for assessing hydrologic model uncertainty include Bayes-
ian recursive estimation [Thiemann et al., 2001], Bayesian
hierarchical mixture of experts [Marshall et al., 2007], and
simultaneous parameter optimization and data assimilation
[Vrugt et al., 2005; Clark and Vrugt, 2006]. These techni-
ques can be extended to climate impact studies to quantify
the total uncertainty in hydrologic models and demonstrate
the extent to which it obscures the differences between
future and baseline hydrologic conditions.

[6] To the authors’ knowledge, only one study has
attempted to simultaneously quantify hydrologic model pre-
diction and parameterization error and then propagate that
uncertainty through climate impact assessments of hydro-
logic alteration [Khan and Coulibaly, 2010]. This study

employed a Bayesian neural network rainfall-runoff model
to explore climate-impacted hydrology. In this study, the
posterior distribution of model parameters and the final dis-
tribution of model predictions were assumed Gaussian to
improve the tractability of Bayesian integrals, despite the
availability of Markov chain Monte Carlo (MCMC) sam-
pling procedures that allow for more complex and accurate
distributional assumptions. More importantly, uncertainty
bounds were only generated for the streamflow trace gener-
ated using the mean of ensemble climate members, rather
than for each climate member individually. This approach
artificially deflates the true uncertainty in future hydrologic
model projections because hydrologic model error should
be integrated with the range of uncertainties stemming from
GCMs and downscaling techniques.

[7] The study presented here will contribute to the science
of hydrologic uncertainty analysis under climate change by
developing a framework in which hydrologic model error is
formally characterized and appropriately integrated with
other sources of future climate uncertainty to better quantify
the total uncertainty of hydrologic alterations under future
climates. This allows a comparison of the range of projected
changes in streamflow due to climate change to be compared
with the uncertainty due to hydrologic model error. Hydro-
logic model prediction error is formally characterized with
an appropriate likelihood function and combined with prior
distributions of model parameters using Bayes’ Theorem.
MCMC sampling is used to evaluate the posterior distribu-
tions of hydrologic and error model parameters. Reliable
uncertainty bounds for streamflow estimates are constructed
from the integration of parameter and residual uncertainties
and evaluated over the historic record. The Bayesian hydro-
logic modeling framework is then extended to a climate
change impact assessment. Ensembles of baseline and future
climate data are downscaled from GCMs and used to drive
simulations of streamflow over parameter samples drawn
from the posterior space. While GCM projections do not
fully capture climate change uncertainty, the range of cli-
mate projections can be described as an estimate of the irre-
ducible range of climate uncertainty, a minimum bound
[Stainforth et al., 2007a; Wilby and Dessai, 2010]. Time se-
ries of streamflow statistics are generated from baseline and
future ensembles of simulated flows. Appropriate probability
distributions are then fit to these statistics, enabling the esti-
mation of streamflow quantiles and their sampling error for
the ensemble of baseline and future conditions. Quantile
estimates are directly compared between baseline and future
scenarios in the context of their cumulative uncertainties.
The framework can be used to highlight the complex interac-
tions between different sources of uncertainty and their
effects on future estimates of design flow statistics used in
decision making. An application of this framework is pre-
sented for the White River Basin in Vermont using a version
of the monthly ABCD hydrology model [Thomas, 1981]
with a snow component.

[8] The paper will proceed as follows. Section 2 provides
background on Bayesian inference techniques in rainfall-
runoff modeling and their potential use for error propagation
in future hydrologic simulations. Section 3 delineates the
methodology used to quantify the total uncertainty of hydro-
logic alteration under future climate change scenarios. The
methodology is applied and results presented in section 4,
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and the study concludes in section 5 with a discussion of
future research needs.

2. Bayesian Methods in Hydrologic Modeling
and Their Use in Climate Change Studies

[9] Bayesian methods provide a formal mechanism to
characterize the error in hydrologic model predictions, along
with uncertainties surrounding parameterization. In a Bayes-
ian framework, previous knowledge about parameter values
can be incorporated into model calibration through a proba-
bility density function (pdf) known as the prior distribution. A
joint pdf is then used to summarize the distribution of model
residuals, and MCMC sampling procedures can be used to
characterize the posterior distributions of hydrologic and error
model parameters. If the error model correctly represents the
distribution of model residuals, parameter and residual uncer-
tainties can be integrated to develop predictive bounds for
streamflow estimates. A relatively simple Bayesian formula-
tion for rainfall-runoff modeling is described below that can
be employed to help propagate uncertainties in a climate
change impacts analysis. The Bayesian formulation presented
below can be used to emphasize the importance of prediction
error in uncertainty analyses under climate change and high-
light the complex interactions between different sources of
modeling uncertainty. In section 5, we discuss other chal-
lenges (e.g., source separation of uncertainties, choice of error
model, and model structural errors) facing a complete quanti-
fication of hydrologic modeling uncertainty and their implica-
tions for the framework presented in this work.

2.1. Bayesian Hydrologic Modeling

[10] Let a conceptual rainfall-runoff model be formu-
lated as follows:

Q ¼ MðhM ;XÞ þ e (1)

where Q equals the vector of observed streamflows of
length n, hM equals the set of hydrologic model parameters,
X equals the matrix of inputs, Q̂ ¼ M (hM, X) represents the
streamflow model predictions, and e equals residual model
errors. Model residuals are assumed to follow a probability
distribution described by a hypothesized joint pdf with a set
of residual error model parameters h". Initially, no assump-
tions are made regarding the functional form of the error
model e (h"). That is, model residuals may be autocorrelated,
non-Gaussian, or heteroskedastic. However, we assume that
errors associated with input data measurements, response
data measurements, and model structure are aggregated into
the error term e. The implications of this simplifying assump-
tion are discussed in section 5.1.

[11] Before proceeding with calibration, all previous
knowledge about the set of hydrologic and error model pa-
rameters, h ¼ {hM, h"}, is summarized in a prior distribu-
tion, denoted P(h). If no prior information is available,
vague priors can be used so that calibration is driven by
observed data only. The likelihood function, L(Qjh, X), is
based on the error model and is essentially a measure of
hydrologic model skill. For certain hydrologic models
applied at coarse temporal resolutions the choice of error
model may be relatively simple, while many other applica-
tions may require more care in the identification of an

appropriate error model [Kuczera, 1983]. These issues are
discussed further in section 5.2. With an error model and
associated likelihood function chosen, Bayes’ theorem can
then provide the joint posterior distribution of all model
parameters,

PðhjQ;XÞ ¼ LðQjh;XÞ � PðhÞR
LðQjh;XÞ � PðhÞ � dh

(2)

[12] The integral in the denominator is a constant of pro-
portionality required to ensure that the right hand side term
is a well-defined probability density function. MCMC meth-
ods can be used to evaluate the joint posterior distribution by
sampling parameter values that are consistent with the com-
bined information of the data and prior knowledge.

[13] To calculate predictive bounds on simulated stream-
flow, uncertainties in both model parameters and predictive
skill need to be integrated. A time series of predicted per-
centiles, Q�, for the 1 � � nonexceedance level can be con-
structed for the vector of true streamflows Q as follows
[Schoups and Vrugt, 2010]:

PðQ � Q�jXÞ ¼ freqð½MðhM ; j;XÞ þ eðh"; jÞ�j¼1; ... ; J � Q�jXÞ ¼ �
(3)

where j ¼ 1,. . . , J is the number of parameter sets sampled
from the posterior distributions of hM and h". That is, J sam-
ples of model estimates, M(hM, j, X), and model errors,
e(h", j), are generated for each simulated time step to produce
a pdf of predicted values from which the predicted percentile
can be inferred. The notation freq() is used to acknowledge
that the probability of the true vector of streamflows Q falling
below the vector of percentiles Q� is approximated using the
frequency with which the sum of model predictions and
errors fall below those percentiles. A 95% predictive bound
around the time series of true streamflows Q can be formed
with the bounded region [Q.025, Q.975]. If e(h") is set to zero,
then model error associated with parameter uncertainty can
be isolated.

2.2. Integrating Uncertainties From the Hydrologic
Model and Future Climate Projections

[14] Uncertainty in future climate must be integrated
with errors from the hydrologic model to develop an appro-
priate range of possible hydrologic alterations. These
uncertainties arise primarily from errors inherent to GCM
simulations, which have been shown to exhibit poor skill at
predicting even mean climate conditions at subcontinental
scales [Wood et al., 1997; Stainforth et al., 2005]. Addi-
tional uncertainty stems from the downscaling technique
used to transfer coarse GCM climate fields into meaningful
climate changes at the local scale [Fowler et al., 2007].
The climate science literature is ripe with studies exploring
different methods to quantify future climate uncertainty.
This study does not aim to thoroughly review all of these
approaches or examine the merit of each. Rather, a brief
overview of common methods is presented and then one
method is chosen to demonstrate how future climate uncer-
tainties can be nested in a framework aimed at quantifying
the total uncertainty in future hydrologic projections.

[15] The most common approach relies on an ensemble of
future climate scenarios to bracket possible climate changes.
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These scenarios are developed using climate simulations
from multiple GCMs that have been forced with several
emission scenarios and initiated with different starting condi-
tions, often downscaled with only one technique. Some stud-
ies have attempted to address downscaling uncertainty by
using multiple downscaling methods [Wilby and Harris,
2006]. Other studies have attempted to assign nonuniform
probabilities to different projections, using measures of bias
and convergence to inform the choice of probabilities
[Tebaldi et al., 2005]. No matter how they are used, how-
ever, direct use of downscaled, multimodel GCM output as
forcing data can only generate a lower bound on the maxi-
mum range of future climate uncertainty [Stainforth et al.,
2007a]. Since GCM simulations over the historic record do
not fully explore the multiple sources of uncertainty at play,
it is difficult, if not impossible, to develop a satisfying error
model and bracket the true uncertainty of future climate pro-
jections. The quantification of future climate uncertainty
remains largely intractable at present, as expectations for
future experiments is that the uncertainty will increase. This
study considers the simplest and most common quantifica-
tion of future climate uncertainty where an ensemble of Z
projections of future climate developed from several GCMs
and emissions scenarios are downscaled to the region of in-
terest using one downscaling technique. This represents a
minimum range of climate uncertainty but allows a compari-
son of the range of GCM projections to hydrologic modeling
uncertainty. The framework presented in section 3 can easily
be extended to accommodate more complex quantifications
of future climate uncertainty.

3. Framework to Quantify Hydrologic
Uncertainties Under Future Climate Scenarios

[16] The Bayesian hydrologic model described in section 2
can be used to help quantify the uncertainty of important
streamflow statistics, Y, generated under baseline and future
climate conditions. Here, Y is a time series of a statistic of in-
terest (e.g., average annual flows, average monthly flows, an-
nual peak flows, etc.) calculated from a simulated time series
of streamflow. We present an approach that quantifies uncer-
tainty in inferred quantiles of Y stemming from future climate
projections, the hydrologic model, and sampling error.

[17] Assume that Z climate change projections are avail-
able to provide a model-based range of possible future cli-
mate changes. For each climate change projection z [ Z,
streamflow simulations are generated from one of two
sequences of climate drawn from z: (1) a baseline series,
X b

z , which is generated from a downscaled time series of
historical (1950–1999) conditions, or (2) a future series,
X f

z , generated from a downscaled time series of future con-
ditions (2050–2099). Hereafter, all baseline (b) and future
(f) variables will be denoted with superscripts. After the
hydrologic model is calibrated in the Bayesian framework
to historic observations, Monte Carlo resampling is used to
select K parameter sets from the posterior parameter space
over which to simulate an ensemble of K streamflow traces
for both baseline and future climates. These ensembles cap-
ture the parameter and residual uncertainties in the hydro-
logic model. The simulation procedure can be repeated for
each climate sequence z [ Z, producing a total of K�Z
streamflow simulations for both baseline and future

climates. Time series of streamflow statistics, Y b
z;k and Y f

z;k ,
can then be developed from these K�Z baseline and K�Z
future streamflow projections.

[18] To make an inference on the pth quantile, Yp, of the
statistic Y, sampling error in the estimation of Yp must also
be propagated through the analysis. If the climate projec-
tions are of limited length, then sampling error could con-
tribute significantly to uncertainties in quantiles of projected
hydrologic statistics and therefore need to be accounted. For
each climate projection z and posterior parameter sample k,
appropriate pdf’s can be fit to the baseline Y b

z;k and future

Y f
z;k time series. Since both time series are of limited length,

the true parameter values of the fitted pdf’s will be
unknown, but their uncertainty can be described using their
sampling distributions. D samples of the pth quantiles

ðY b
z;kÞpd¼1; ... ; D

and ðY f
z;kÞpd¼1; ... ; D

can be estimated using D

draws from the sampling distributions of the fitted probabil-
ity model parameters. Predictive bounds for the quantiles
ðY bÞp and ðY f Þp can then be estimated at some confidence
level (1 � �)100% using the �

2 and ð1� �
2Þ percentiles of

the ensemble of Z�K�D estimates of the pth quantile
under both baseline and future climate conditions. We note
here that an alternative approach to splitting the climate into
pseudostationary baseline and future time periods would be
to fit a nonstationary probability model [Khaliq et al., 2006]
to a transient climate over the entire timeframe (1950–2099).

[19] The methodology proceeds as follows (Figure 1).
[20] 1. Calibrate the hydrologic model over a set of his-

toric climate and streamflow observations as stated in sec-
tion 2 to develop posterior distributions of hydrologic and
error model parameters. Evaluate the model using a split-
sampling testing procedure. If possible, conduct a differen-
tial split-sample test to determine the capacity of the model
to adequately model changes in climate [Klemes, 1986].

[21] 2. Sample K hydrologic and error model parameter
sets, HM ¼ {hM,1, hM,2,. . ., hM,K} and H" ¼ {h",1, h",2,. . .,
h",K}from their posterior distributions developed in step 1.

[22] 3. For the ith scenario of future climate, zi, selected
from an ensemble of projections Z, develop a baseline cli-
mate sequence of length N, Xb

zi
¼ fxb

zi;1
; xb

zi;2
; :::; xb

zi;N
g, that

represents historic climate. Climate information in X b
zi

can
be downscaled from a historic period (i.e., 1950–1999)
simulated in zi, and can include variables such as tempera-
ture, precipitation, potential evapotranspiration, etc.

[23] 4. Generate a future climate sequence, X f
zi

, that is
downscaled from the same climate projection but is repre-
sentative of some future time period (i.e., 2050–2099).

[24] 5. To develop the kth time series of baseline stream-
flow, Qb

zi;k
, sample N perturbations ebðh";kÞ ¼ feb

k;1; e
b
k;2; . . . ;

eb
k;Ng from the error model e (h",k) using the kth error model

parameter set h",k. Then drive the hydrologic model with the
baseline climate sequence using the kth hydrologic model
parameter set hM,k and add the output to the error series
ebðh";kÞ :

Qb
zi;k
¼ MðhM ;k ;X

b
zi
Þ þ ebðh";kÞ

[25] The kth time series of future streamflow Qf
zi;k

can be
generated in the same fashion by substituting Xb

zi
with X f

zi

and ebðh";kÞ with a new sequence of errors ef ðh";kÞ.
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[26] 6. Repeat step 5 K times to develop K time series of
baseline and future streamflow.

[27] 7. Calculate the time series of streamflow statistics
Y b

zi;k
and Y f

zi;k
for each of the K parameter samples for both

baseline and future climate conditions.
[28] 8. Fit an appropriate probability model to each time

series of streamflow statistics. An estimate of the pth quan-

tile, ðY b
zi;k
Þp and ðY f

zi;k
Þp, can be inferred from the fitted

probability models for both baseline and future statistics.
For instance, if the streamflow statistic (or its logarithms)
are normally distributed, the pth quantile can be estimated
as Yp ¼ �y þ �p � �y, where �y is the mean of the statistic,
�y is its standard deviation, and �p is the 100p percentile of
the standard normal distribution. To account for sampling
error, draw D estimates of probability model parameters
(i.e., �y,d and �y,d with d ¼ 1,. . . , D) from their sampling
distributions to produce D estimates of the pth quantile,

ðY b
zi;k
Þpd¼1; ... ; D and ðY f

zi;k
Þpd¼1; ... ; D. In this study, sampling

distributions were taken as the posterior distributions of prob-
ability model parameters developed via a Bayesian fit of the

probability model to the streamflow statistics Y b
zi;k

and Y f
zi;k

.
Vague distributions (e.g., uniform distributions) can be used
as priors for probability model parameters in the Bayesian fit.

Alternatively, estimates of sampling distributions for differ-
ent probability models are often available in the literature.

[29] 9. Repeat steps 3–8 for each climate projection
z [ Z. This will produce K�Z�D different estimates of the
pth quantile for both baseline and future climate conditions.
The expected value of the pth quantile of Y for baseline
and future conditions can be calculated by taking the mean

across all K�Z�D quantile estimates, ðY bÞp and ðY f Þp .

Similarly, predictive intervals [ðY bÞp;�2 ,ðY
bÞp;ð1��2Þ] and

[ðY f Þp;�2 ,ðY
f Þp;ð1��2Þ] for the pth quantile can be developed

using the �
2 and ð1� �

2Þ percentiles of the ensemble of
Z�K�D quantile estimates. These two intervals quantify
the total considered uncertainty in estimates of the pth
quantile of a streamflow statistic Y for both baseline and
future conditions. They can be directly compared to pro-
vide a reliable depiction of how distinct the future hydro-
logic alteration for that statistic will be after accounting for
all sources of uncertainty considered.

4. Application of Statistical Framework in a
Climate Impact Assessment

[30] An application of the statistical framework described
above is presented for the White River Basin, located in

Figure 1. Flowchart of the statistical framework for a hydrologic uncertainty analysis under climate
change.
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central Vermont. Records of monthly precipitation, tempera-
ture, and potential evapotranspiration are used to drive a
Bayesian calibration of a conceptual rainfall-runoff model of
the basin. An adaptation of the ABCD conceptual hydrologic
model that incorporates a new snow modeling scheme is
chosen for this purpose. After calibration, posterior distribu-
tions of both hydrologic and error model parameters are
examined for convergence, and a probabilistic evaluation of
the error model is presented to ensure the distribution of
model residuals is well characterized. After the model is
evaluated, the framework for climate impact assessments is
applied to an ensemble of transient GCM climate scenarios.

4.1. White River Basin

[31] The White River is a major tributary of the Connect-
icut River in New England, draining 1790 square kilo-
meters in the east central portion of Vermont (Figure 2).
Running 97.6 km from the Green Mountains to the Con-
necticut River Valley below, the White River is the largest
gauged basin in the Connecticut River Watershed without
significant regulation from upstream reservoirs or land use
changes. Precipitation rates are relatively constant throughout
the year, averaging approximately 100 mm m�1. Regional
estimates suggest about 70% of all winter precipitation falls
as snow [Huntington et al., 2004]. Seasonal variations in tem-
perature drive snow accumulation and melt processes that
dominate hydrologic response throughout the winter and
spring months. Streamflow is lowest during the summer
and early fall months when evapotranspiration rates reach
their peak.

4.2. ABCD Hydrologic Model

[32] An altered version of the ABCD hydrologic model is
considered to model monthly streamflow in the White River
Basin. The original ABCD model is a four parameter
(a,b,c,d), conceptual rainfall-runoff model designed through
a control volume analysis on upper soil moisture zone stor-
age [Thomas, 1981]. The model converts monthly averaged

precipitation and potential evapotranspiration into estimates
of monthly streamflow by diverting water between two soil
storage zones, losses to evapotranspiration, and the stream.
The model has been recommended as an effective parsimo-
nious model with physically meaningful parameters capable
of efficiently reproducing monthly water balance dynamics
in both theory [Vogel and Sankarasubramanian, 2003] and
practice [Alley, 1984; Vandewiele et al., 1992]. A detailed
review of the original ABCD model formulation can be
found in [Fernandez et al., 2000].

[33] A snow component similar to that of Martinez and
Gupta [2010] was added to the ABCD model to simulate
the snow accumulation/melt processes that dominate much
of the hydrologic cycle in northern latitude watersheds. A
snow storage zone is added that stores all incoming precipi-
tation as snow water equivalent during times of year when
the temperature falls below a threshold TSnow. A second
threshold, Train, delimits the temperature above which all
precipitation falls as rain. When temperatures rise above
Train, all water held in the snow storage zone melts and is
added to incoming precipitation for that month. This thresh-
old melt process is highly representative of springtime hy-
drology seen in northern New England rivers. When monthly
temperatures fall between Train and Tsnow, a fraction of the
incoming precipitation for that month enters the snow storage
component, and the remainder falls as rain. In addition, a
fraction of the water held as snow is available for melt and is
added to the effective rainfall for that month. The rate of
melt is given by the parameter e. The total snow melt in time
t is given by

Meltt ¼

St�1 Tt � Train

ðSt�1 þ fract � Ptot;tÞ � e� ð1� fractÞ Tsnow < Tt < Train

0 Tt � Tsnow

8>><
>>:

(4)

Figure 2. Schematic of the White River Basin, Vermont, USA.
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where St-1 is the water stored as snow in the previous
month, Ptot,t is the total precipitation, Tt is the mean
monthly temperature, and fract is the fraction of precipita-
tion that falls as snow, equal to Train�Tt

Train�Tsnow
. The water stored

as snow in month t is given by

St ¼
0 Tt � Train

ðSt�1 þ fract � Ptot;tÞ �Meltt Tsnow < Tt < Train

Ptot;t þ St�1 Tt � Tsnow

8><
>:

(5)

[34] The effective precipitation input to the model (pre-
cipitation available for runoff, soil zone storage, ET, etc.)
is then given by

Peff ;t ¼
Ptot;t þMeltt Tt � Train

ð1� fractÞ � Ptot;t þMeltt Tsnow < Tt < Train

0 Tt � Tsnow

8><
>:

(6)

[35] In total, three parameters are used to represent snow
accumulation/melt processes, bringing the total number of
model parameters to seven (a, b, c, d, e, Train, Tsnow). Dur-
ing calibration, the parameter Tsnow is not directly calibrated
because its prior distribution would have to be conditioned
on the value of Train to ensure it took a smaller value. To cir-
cumvent this issue, a nonnegative parameter dif ¼ Train �
Tsnow is used, from which Tsnow can be directly computed.

[36] Martinez and Gupta [2010] performed a thorough
analysis on the suitability of a similar snow-augmented
ABCD model structure for catchments throughout the
United States, testing the model using several diagnostic
statistics including Nash-Sutcliffe efficiency, bias, and var-
iance error. That study found that the snow-augmented
ABCD model structure significantly improves results for
snow-dominated watersheds in New England and is a suita-
ble structure for many catchments in the region, supporting
its use in this study.

4.3. Bayesian Calibration and Evaluation

[37] Historic, monthly averages of precipitation and maxi-
mum, minimum, and mean daily temperatures were gathered
for the basin over the period of January 1980 to December
2005 from the gridded observed meteorological data set pro-
duced by Maurer et al. [2002]. Average monthly stream-
flows were collected from the U.S. Geological Survey
(USGS) West Hartford gauge (ID 01144000) located at the
mouth of the White River. Monthly averages of maximum,
minimum, and mean daily temperatures were combined with
estimates of monthly extraterrestrial solar radiation to pro-
duce a time series of potential evapotranspiration using the
Hargreaves method [Hargreaves and Samani, 1982]. Solar
radiation was calculated using the method presented by
Allen et al. [1998].

[38] Based on past hydrologic modeling experience for
monthly flows in the New England region, a normal distri-
bution with mean zero and standard deviation � was ini-
tially chosen to characterize the sampling distribution of
the residuals of the natural logarithms of observations and

model predictions (hereafter referred to simply as model
residuals)

f ð"lnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� �� �2
p � exp � "2

ln

2� �2

� �
(7)

where "ln ¼ ln(Q) � ln(Q̂). The likelihood function for the
observed streamflow values, Q, is then given by

LðQjh;XÞ ¼ 2� �� �2
� ��n

2
Yn

t¼1

exp �
ln Qtð Þ � ln Q̂t

� �� �2

2� �2

 !

(8)

[39] The prior for the unknown parameter � was set to a
gamma distribution with known shape � ¼ 1 and scale
� ¼ 2.5 parameters. The posterior of this parameter charac-
terizes the level of uncertainty in hydrologic model esti-
mates. A verification of the chosen sampling distribution
for model residuals is described below.

[40] Past studies were used to inform prior distributions
for the hydrologic model parameters a, b, c, and e [Alley,
1984; Vandewiele et al., 1992; Fernandez et al., 2000;
Martinez and Gupta, 2010], and the remaining model pa-
rameters (d, Train, dif) were given vague priors in the form
of uniform distributions or normal distributions with large
variances. Initial states were also calibrated in the model to
avoid any parameter biases from incorrect initial condi-
tions. The slice sampler was chosen for the MCMC sam-
pling and was implemented in the JAGS programming
language (M. Plummer, rjags: Bayesian graphical models
using MCMC, R package version 2.2.0-4, http://CRAN.
R-project.org/package¼rjags). Three chains were used in
the sampling, and the Gelman and Rubin factor was used to
test for convergence [Gelman and Rubin, 1992]. Calibra-
tion was implemented over the period between January
1980 and December 1999, leaving 6 years of data for eval-
uation. Table 1 summarizes the prior and posterior distribu-
tions for all parameters inferred in the MCMC sampling, as
well as allowable ranges for each parameter. Figure 3a
shows the history plots of parameter a for the three chains,
and Figure 3b presents histograms of the prior and posterior
distributions of parameter a. For all model parameters, the
Gelman and Rubin convergence factor was within 0.005
of 1, suggesting that convergence was reached for all cali-
brated parameters.

[41] Figure 3c presents a normal probability plot of the
model errors "ln generated from the hydrologic simulation
under the median posterior parameter set over the evaluation
period (January 2000 to December 2005), and Figure 3d
shows their autocorrelation coefficients. Results from the
Q-Q plot suggest that model residuals follow a normal distri-
bution relatively well. Most autocorrelation coefficients in
Figure 3d are insignificant, including that at lag 1. There are
some coefficients that exhibit small but significant values,
particular at seasonal lag times. An autocorrelation compo-
nent could be added to the error model, but this would
require additional parameters to be estimated in the calibra-
tion, creating a tradeoff between problem dimensionality
and error model accuracy. The seasonal autocorrelation seen
in Figure 3d is rather low and not considered worth the
increased dimensionality needed to model its behavior.
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Therefore, the original choice of a normal error model with
no autocorrelation component for eln was considered adequate
for this modeling exercise.

[42] Figure 4 shows the observed monthly streamflow for
the last 5 years of calibration and the entire evaluation pe-
riod, as well as model estimates generated by the median
values of the posteriors for hydrologic model parameters.
The Nash-Sutcliffe efficiency (NSE), mean flow bias, and
variance error for simulated streamflow using the median pa-
rameter set equals 0.82, �1.4%, and þ6.6% for the calibra-
tion period and 0.67, �5.2%, and �15.1% for the evaluation
period. The bias and variance errors are expressed as a per-
centage of observed values. These performance statistics are

considered either ‘‘good’’ or ‘‘acceptable’’ in other hydro-
logic modeling studies [Martinez and Gupta, 2010]. Also
shown in Figure 4 are error bounds consistent with the 2.5th
and 97.5th percentiles of streamflow estimates, calculated
according to equation 3. Observed data from the calibration
and evaluation periods fell outside the 95% predictive inter-
val 3.3% and 6.7% of the time, respectively, again suggest-
ing that the error model adopted is appropriate for this
application.

[43] An additional evaluation procedure was conducted
to further evaluate the adequacy of the error model. The
details of the procedure are given by Laio and Tamea
[2007]. In brief, the procedure tests whether probabilistic

Table 1. Summary of Prior and Posterior Distributions for All Model Parametersa

Parameter Allowable Range Prior Distributions

Posterior Distribution

First Quartile Median Mean Third Quartile

a (0, 1) Beta (a ¼ 1.2, b ¼ 0.6) 0.982 0.984 0.984 0.986
b (mm) (0,1) Normal (� ¼ 300, ’ ¼ 100) 303 310 310 316
c (0, 1) Beta (a ¼ 0.6, b ¼ 1.2) 0.14 0.18 0.18 0.22
d (0, 1) Uniform (a ¼ 0, b ¼ 1) 0.45 0.66 0.74 0.90
e (0, 1) Beta (a ¼ 0.8, b ¼ 1.8) 0.141 0.205 0.206 0.268
Train (�C) (�1,1) Normal (� ¼ 0, ’ ¼ 4) �1.65 �1.48 �1.47 �1.31
dif (�C) (0,1) Uniform (a ¼ 0.01, b ¼ 20) 12.9 13.9 14.0 15.0
�(ln(mm)) (0,1) Gamma (� ¼1, � ¼ 2.5) 0.13 0.14 0.14 0.15

aNormal priors are given mean (�) and standard deviation (’) hyperparameters. Gamma priors have shape (�) and scale (�) hyperparameters.

Figure 3. MCMC and model error diagnostics, including (a) the history plot for parameter a shown for
the three MCMC chains, (b) a histogram of the prior (red) and posterior (black) distribution for parameter
a, (c) a Q-Q plot showing sample quantiles of model error "ln against theoretical quantiles of a standard
normal distribution, and (d) the autocorrelation function of model errors "ln.
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predictions for a set of streamflow observations are adequate
in a statistical sense. To conduct the test, the cumulative dis-
tribution function of predicted streamflow at time t is eval-
uated with respect to the observation qt at t via a probability
integral transform, vt ¼ Pt(qt). If the probabilistic predictions
of streamflow are suitable then the vt values will be mutually
independent and distributed uniformly between 0 and 1. To
test uniformity, a probability plot can be employed to graphi-
cally examine how well the distribution of vt values matches
a U(0,1) distribution. The condition of mutual independence
can be tested using the Kendall’s tau test of independence.

[44] The probability plot of vt values versus a theoretical
uniform distribution are shown in Figure 5, along with Kol-
mogorov confidence bands at the 95% confidence level.
The distribution of vt values match that of a U(0,1) distribu-
tion very well, satisfying the first condition of the test. In
addition, the condition of mutual independence was met
under the Kendall’s tau test of independence (p value of
0.81), satisfying the second condition of the test. These
results provide further support for the error model chosen
in this application.

4.4. Future Climate Scenarios

[45] Seventy-three transient future climate simulations,
running from 1950 to 2100 and sampled across the A1b,
A2, and B1 emission scenarios, were gathered from the
World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project Phase 3 (CMIP3) multimo-
del data set. GCM simulations were downscaled according
to the bias correction and statistical downscaling (BCSD)
approach described by Maurer et al. [2007]. For each
GCM simulation, a baseline and future climate scenario
(i.e., time series of mean monthly temperatures and total
monthly precipitation) was taken from 50 year windows of
downscaled climate data centered about the years 1975 and
2075, respectively. Figure 6 shows the absolute and percent
difference between mean annual temperatures and mean
annual precipitation, respectively, for these two periods
across all 73 projections. We note here that maximum and
minimum monthly temperatures are not provided in the
downscaled CMIP3 data set but are required for calculations
of potential evapotranspiration. To generate maximum and
minimum monthly temperature fields for baseline and future
scenarios, the average differences between maximum and
mean monthly temperature and minimum and mean monthly
temperature were calculated for each month over the historic
record. These average differences were then added to each
time series of mean monthly temperature for all projections
from the CMIP3 data set to generate the maximum and mini-
mum monthly temperature fields.

4.5. Projections of Hydrologic Response With
Uncertainty

[46] The Z ¼ 73 baseline (1950–1999) and future (2050–
2099) climate scenarios taken from the CMIP3 data set
were each used to drive an ensemble of K ¼ 5000 hydro-
logic model simulations, each with different parameter sets
drawn from the posterior distributions developed in section
4.3. Four different annual streamflow statistics (Y) were
considered in the analysis, including average January,
March, April, and October streamflows. These monthly sta-
tistics were chosen because they exhibit a wide range of
changes under future climate and highlight the importance
of including hydrologic model error in climate impact
assessments. These statistics were assumed to follow a log-
normal distribution, similar to the observed historic stream-
flow data. This assumption was validated for each of these

Figure 4. Time series of streamflow during calibration
(left of vertical dashed line) and evaluation phases (right of
vertical dashed line). Only a portion of the calibration time
period is shown for clarity.

Figure 5. Q-Q plot of the sample quantiles of the vt val-
ues versus those of a U(0,1) distribution. Kolmogorov con-
fidence bands (dashed lines) at the 95% confidence level
are also shown.

Figure 6. The change in mean annual precipitation and
mean annual temperature between baseline and future time
slices across all 73 climate scenarios.
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statistics under a large sample of climate scenarios and pa-
rameter sets using probability plots. Sampling error in the
quantiles of these statistics was estimated using D ¼ 1000
different estimates for the mean and standard deviation of
the fitted lognormal distributions drawn from their posterior
distributions. Results are presented as follows. The isolated
effects of hydrologic model residual error on the estimation
of these statistics are considered first. The integration of
uncertainties from the range of climate projections, model
residual error, model parameterization, and sampling
uncertainty are then addressed. An analysis of alteration in
different monthly statistics is then presented in the context
of their integrated uncertainty estimates.

[47] Figure 7 presents the pdf of a fitted lognormal distri-
bution to January monthly streamflows developed from one
GCM scenario over the baseline period forced with one
sample of hydrologic and error model parameters. Two
pdf’s are shown, one developed from the original stream-
flow trace, and a second developed from the same trace af-
ter being perturbed with noise generated from the error
model. The variability in both future climate and parameter
estimates is omitted by considering only one climate trace
and parameter set, therefore isolating the effects of residual
error on the distribution of the January flow statistic. As
expected, the addition of residual error to the simulated
streamflow trace causes the spread in January flows to
increase. Addition of residual uncertainty to the model out-
put appropriately adjusts the data so that it better represents
the actual precision with which we can estimate character-
istics of the streamflow statistic. Since the error model is
logarithmic, the spread increases more at higher streamflow
values than it does at lower values, suggesting different lev-
els of precision for different magnitudes of flow. Interest-
ingly, this highlights one of the difficulties in the choice of
error model. While a transformation might make the data
more tractable for a given error model, the application of

that error model may lead to asymmetric uncertainty esti-
mates after the transformation is reversed.

[48] To develop comprehensive uncertainty bounds
around future hydrologic statistics, the residual error of the
hydrologic model needs to be integrated with uncertainties
in model parameterization, future climate projections, and
sampling error. Figure 8 shows 95% predictive intervals for
quantile estimates of baseline period January streamflow
plotted against nonexceedance probabilities for different con-
siderations of uncertainty. Figures 8a–8c show the isolated
contributions of climate uncertainty, hydrologic model pa-
rameter and residual error, and sampling error to the uncer-
tainty of quantile estimates, respectively. The range of
quantile estimates in Figure 8a stems from the ensemble of
baseline climate scenarios run over the median hydrologic
model parameter set without the addition of residual noise.
The range in Figure 8b was developed for only one ensemble
member of baseline climate, but both parameter and residual
uncertainties from the hydrologic model were considered.
The influence of hydrologic model parameter and residual
errors are aggregated and presented together in Figure 8b in
order to represent the total added uncertainty from the hydro-
logic model. In Figure 8c, one baseline climate scenario was
used to drive the hydrologic model with the median parame-
ter set and no additional noise, but sampling uncertainty was
calculated for each quantile. We note that the ranges of
uncertainty in Figures 8a–8c are dependent on the climate
ensemble member or parameter set that was held constant
during their development and are thus only used to illustrate
the range of isolated uncertainty bounds. Figures 8d–8f show
the predictive bounds for quantile estimates when climate,
hydrologic model, and sampling uncertainties are integrated
together. Figure 8d is the same as Figure 8a, but Figure 8e
shows the uncertainty bounds for quantile estimates when
climate uncertainty, parameter uncertainty, and residual
uncertainty are considered simultaneously. Figure 8f shows
the total integrated uncertainty with sampling error consid-
ered as well.

[49] When comparing isolated and integrated uncertain-
ties, it immediately becomes clear that uncertainties from
climate projections, hydrologic model parameter and resid-
ual error, and sampling error cannot be independently added
to generate reliable predictive bounds for estimates of hydro-
logic statistics and their properties. This is seen in Figure 8e
and 8f, in which the range of uncertainty for many quantiles,
particularly the larger ones, is greater than the sum of the
uncertainties of their component parts (Figures 8a–8c). This
property highlights the dependence of uncertainty bounds on
the interactions between the different sources of uncertainty.

[50] This is a particularly important point, so we present
a simplified example to emphasize it here. Consider a nor-
malized streamflow quantile, Yp, with zero mean and a var-
iance conditional on either isolated climate uncertainty
(�2

Yp;c
) or hydrologic modeling uncertainty (�2

Yp;h
). Assum-

ing Yp is normally distributed, a (1 � �) predictive interval
under isolated climate uncertainty and isolated hydrologic
modeling uncertainty could be respectively written as
[��Yp;c

� ��
2
,�Yp;c

� ��
2
] and [��Yp;h

� ��
2
,�Yp;h

� ��
2
], where

��
2

is the (1� �
2) percentile of the standard normal distribu-

tion. Now assume that Yp can be expressed under the simple
additive model Yp ¼ "c þ "h, where "c � N(0, �2

Yp;c
) and "h

Figure 7. Probability density functions of baseline Janu-
ary monthly streamflow with (red dashed line) and without
(black solid line) a perturbation with noise generated from
the error model. Only one GCM scenario (z ¼ 1) and pa-
rameter set (k ¼ 1) were used to generate the streamflow
trace.
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� N(0, �2
Yp;h

). Assuming that variations in Yp stemming from

climate and hydrologic modeling uncertainty are independ-
ent, we would expect that the total variance of Yp would
equal the sum of the isolated variances, �2

Yp
¼ �2

Yp;c
þ �2

Yp;h
.

However, the predictive interval for Yp under integrated cli-
mate and hydrologic modeling uncertainty would be given as

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

Yp;c
þ �2

Yp;h

q
� ��

2

h
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

Yp;c
þ �2

Yp;h

q
� ��

2

i
, which does not

correspond to the sum of the two isolated intervals above

because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

Yp;c
þ �2

Yp;h

q
6¼ �Yp;c

þ �Yp;h
. Therefore, even

under the simplifying assumption that variations in Yp can be
described by the simple additive model above, we would not
expect uncertainty intervals to be additive. Thus, there is no
reason to believe that uncertainty intervals would be additive
given a more complex situation in which variations in Yp can
be influenced by the interactions of different sources of uncer-
tainty within a hydrologic modeling framework.

Figure 8. (a–c) Isolated and (d–f) integrated 95% predictive intervals for quantiles of January streamflow
over the baseline period. Uncertainty originating from a range of climate scenarios, parameter and residual
errors in the hydrologic model, and sampling error are shown in isolation in Figures 8a, 8b, and 8c, respec-
tively. Climate uncertainty in Figure 8a is repeated in Figure 8d, the integration of climate, parameter,
and residual uncertainties is presented in Figure 8e, and Figure 8f shows the cumulative uncertainty after
sampling error is also considered.
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[51] The dependence of variations in Yp on interactions
between different sources of uncertainty can be traced to
several contributing factors. First, the hydrologic model
being considered is nonlinear, so different parameteriza-
tions of that model will result in nonlinear responses to a
given climate. When those various parameterizations are
used to simulate hydrologic response over a range of cli-
mates, there is the potential that the combination of an
extreme climate ensemble member and parameter set will
lead to significantly different streamflow responses than
that seen under just climate or parameter uncertainty alone.
Another source of dependency arises from the interaction
between the error model and the ensemble of climate mem-
bers. Because the error model used in this application is
based on a logarithmic transformation, the uncertainty of
large quantile values becomes highly skewed to the right
after residual uncertainty is accounted. If an ensemble cli-
mate member leads to slightly larger quantile values for the
streamflow statistic being considered, the residual error
estimated for those larger quantiles could lead to the signif-
icant expansion of their predictive bounds. Finally, there
are significant interactions between sampling error estima-
tion and both hydrologic and climate model uncertainties.
Sampling error uncertainty bounds will grow with the uncer-
tainty in the parameters of the distribution used to model the
streamflow statistic. The sampling distributions of these pa-
rameters will likely change when climate and hydrologic
model uncertainties are considered, causing the magnitude
of sampling error to change with respect to its range when
considered in isolation.

[52] After aggregating the uncertainties from climate sce-
narios, the hydrologic model, and sampling error, it becomes
evident that some quantile values for certain streamflow
statistics can only be estimated with limited precision. This
is shown for the cumulative error under baseline climate

conditions in Figure 8f. In the case of future climate condi-
tions, the range of climate projections becomes far more sig-
nificant. Figure 9 compares the cumulative uncertainty of
January monthly flows evaluated over the historic and future
climate conditions. Figure 9a is the same as in Figure 8f, but
Figure 9b shows the uncertainty in future climate projections.

[53] Two primary differences arise between the baseline
and future cumulative uncertainties for January flow quan-
tiles. First, the underlying climate uncertainty is far greater
under the future scenarios than those of the baseline. This
is expected because the baseline climate projections are all
directly mapped to the historical trace of temperature and
precipitation via downscaling. Thus, the range of historical
projections does not model climate uncertainty or even cli-
mate model uncertainty but rather is an artifact of the bias
correction method. Consequently, the range of future pro-
jections also does not model the uncertainty of future cli-
mate or even the model uncertainty of future climate
projections. Nonetheless, the range of climate projections
is commonly used to provide some sense of the uncertainty
in the projections that arise due to model error and internal
variability and are used for that purpose. That range, albeit
a minimum range of climate uncertainty, significantly
increases the uncertainty in the quantile estimates relative
to hydrologic modeling uncertainty as shown in the com-
parison between Figures 9a and 9b. Second, the sampling
error for larger quantiles is vastly greater for the future
scenarios than for the baseline. This is due to the greater
spread of January flows under future conditions and its
influence on sampling error estimates. Overall, it is clear
that the cumulative uncertainty for quantile estimates of
this statistic is much greater for the future than it is under
baseline conditions.

[54] Quantile estimates can be directly compared between
baseline and future scenarios in the context of their

Figure 9. Integrated 95% predictive bounds for January flow quantiles under the (a) baseline and
(b) future periods.
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cumulative uncertainties to help determine the level of con-
fidence that can be associated with their possible alteration
under climate change. Figure 10 presents the cumulative
uncertainty of quantile estimates of monthly streamflow sta-
tistics in the White River for future and baseline conditions.
Here, no distinction is made between the different sources of
uncertainty (e.g., climate, hydrologic, or sampling errors).
Rather, the cumulative 95% predictive intervals for flow
quantiles under baseline and future conditions are overlaid
on each other to provide a representation of whether changes
in streamflow under climate change exceed the range of
uncertainty that arises during the modeling process. Less
overlap between predictive intervals of flow quantiles under
baseline and future conditions provides greater confidence
that the flow quantile will actual differ under future climate
conditions. Figure 10a shows that there are significant differ-
ences between the distributions of January flows in the base-
line and future periods even after accounting for cumulative
modeling uncertainties. Results suggest that climate projec-
tions of January flows are significantly higher in the future
than in the present, likely due to a shift in the snowfall to
precipitation ratio driven by increased wintertime tempera-
tures. Over most January quantiles, approximately half of
the bounded region for future conditions lies completely out-
side the range of baseline uncertainty. This suggests that this
range of climate changes rises to a level that is well above
the baseline uncertainty.

[55] Figures 10b and 10c show results for March and April
average streamflows, respectively. The range of climate pro-
jections show March flows increasing in the future while April
flows decrease. These changes are consistent with earlier
snowmelt occurrences and decreases in snowpack storage that
historically have persisted into the later spring. Interestingly,

the highest quantiles of March flows for the future period
show minor departures from those of the baseline; differen-
ces become more noticeable for flows below the 95th percen-
tile. This is not the case for April flows, which show more
significant departures between baseline and future flows at
the highest quantiles. This suggests that more confidence can
be associated with shifts in the highest flows during April
than in March. This is likely because snowpack, a driving
factor of the largest spring flows, is consistently reduced in
April under all future hydroclimatic projections, but is more
variable across the projections in the month of March.

[56] Figure 10d shows results for the month of October.
The range of climate projections exceeds only minutely the
baseline uncertainty bounds for October quantiles. The
spread in the future period for most quantiles extends both
below and above that of the baseline period, although the
changes are extremely small except for the higher quan-
tiles. These results suggest that no real change in most Oc-
tober flow quantiles are projected in this set of CMIP3
climate changes.

5. Discussion of Future Research Needs
[57] The framework in this study addresses many types

of uncertainty in future hydrologic alterations and integra-
tes them together to form a more comprehensive expression
of the total uncertainty surrounding future hydrologic varia-
bles. Nevertheless, several simplifying assumptions were
made regarding the quantification of hydrologic model
uncertainty in this analysis. Various challenges still hinder a
complete quantification of this uncertainty, including source
separation of uncertainties, choice of error model, and
model structural errors. A discussion of each of these issues

Figure 10. Integrated 95% predictive bounds in flow quantiles for baseline and future periods for the
months of (a) January, (b) March, (c) April, and (d) October.
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follows to highlight further research needed to bolster the
framework presented in this study.

5.1. Input and Response Data Uncertainties in Future
Hydrologic Projections

[58] To simplify the modeling approach this study aggre-
gated all errors associated with input data measurements,
response data measurements, and model structure into one
error term ", but the aggregation of different types of error
into one term can have significant implications for the
quantification of uncertainties in future hydrologic projec-
tions [Thyer et al., 2009]. Errors in forcing data sets (e.g.,
input precipitation data, temperature data, etc.) and obser-
vations (e.g., streamflow measurements) are particular to
the historic record. Their influence on uncertainty estimates
for streamflow predictions should be isolated to the historic
period and removed from uncertainty estimates of future
streamflow projections. Approaches have been proposed to
quantify and separate different sources of uncertainty in
hydrologic modeling through Bayesian methods [Kavetski
et al., 2006a, 2006b; Huard and Mailhot, 2008]. These
approaches represent possible contributions of uncertainty
from input and output measurement errors using prior dis-
tributions chosen by the modeler. Prior distributions for
input and output data permit corruptions in those measure-
ments to be filtered out of the calibration process, allowing
for more robust and unbiased estimation of hydrologic and
error model parameters, along with their associated uncer-
tainties. While not employed in this study, methodologies
for separating input and response data uncertainties from
uncertainties in future hydrologic projections are promising
tools that should be explored in future applications of the
proposed framework.

5.2. Error Model Identification and Associated
Challenges

[59] The choice of error model used to represent the
probabilistic structure of model residuals also plays a criti-
cal role in accurately assessing uncertainties in future
hydrologic projections. In the vast majority of hydrologic
applications, model errors violate assumptions of normal-
ity, independence, and homoscedasticity [Kuczera, 1983].
If the error model is incapable of capturing these character-
istics, parameter estimates can become biased and infer-
ences of parameter and residual uncertainty can degrade
[Thyer et al., 2009]. This could significantly impede efforts
to accurately propagate hydrologic modeling uncertainty
through a climate change impacts analysis.

[60] Previous studies have proposed many alterations to
the error model to capture different characteristics of resid-
ual error. Several studies have employed autoregressive
moving average (ARMA) models and various transforma-
tions to model autocorrelated, non-Gaussian, and hetero-
skedastic errors [Kuczera, 1983; Bates and Campbell,
2001; Thiemann et al., 2001]. Perhaps the most inclusive
error model is proposed by Schoups and Vrugt [2010],
in which residual errors were modeled using an autoregres-
sive polynomial, a time-variant standard deviation linearly
related with mean predicted flow, and a random noise
component described by a skew exponential power distri-
bution. The three components allowed the error model to
simultaneously model residuals exhibiting autocorrelation,

heteroskedasticity, and nonnormality, respectively, without
the use of a transformation. A flexible parameterization,
inferred through Bayesian techniques, allowed the structure
of model errors to be determined during calibration, cir-
cumventing the difficulties of specifying error structure a
priori. Overall, the advances in explicitly representing the
stochastic nature of hydrologic model error are promising
and suggest that Bayesian methods to quantify predictive
uncertainty may be reliable for complex, high temporal re-
solution (e.g., daily) models often used in climate change
impact analyses. Further research is needed to test this
hypothesis.

5.3. Structural Errors in Hydrologic Modeling

[61] Structural errors in conceptual hydrologic modeling
arise because spatially and temporally averaged representa-
tions of a catchment are often unable to simulate the true
dynamics of a distributed and heterogeneous watershed.
Structural errors may present one of the biggest challenges
to the use of hydrologic models in predicting catchment
response to climate change, especially when those responses
fall outside the range of historic variability. Efforts to accu-
rately characterize structural error in hydrologic models
have met with only moderate success. Many studies assume
input and output data are known and lump structural errors
into a residual error term [Bates and Campbell, 2001;
Marshall et al., 2004; Stedinger et al., 2008]. This was the
approach taken in this study. Other approaches consider fluxes
in rainfall-runoff models as stochastic, using state space
approaches [Vrugt et al., 2005] and time-varying parameter
values [Kuczera et al., 2006; Reichert and Mieleitner, 2009]
to compensate for structural deficiencies stemming from spa-
tial and temporal averaging. The use of several different
model structures is also a popular choice [Boorman and
Sefton, 1997; Wilby and Harris, 2006; Jiang et al., 2007;
Kay et al., 2009; Prudhomme and Davies, 2009a, 2009b],
and methods like Bayesian model averaging have recently
been employed to help generate more reliable predictive
intervals from these ensembles [Duan et al., 2007;
Marshall et al., 2007]. However, it is often difficult to
determine whether enough model structures are considered
to develop a complete accounting of structural uncertain-
ties. These different approaches and their underlying
assumptions are summarized in more detail by Renard et al.
[2010]. The formal characterization of structural model
uncertainty remains a primary challenge to the hydrologic
modeling community, especially as the need for insight
about future hydrologic alterations under previously unseen
climate forcings increases.

6. Conclusions
[62] There is a growing recognition that advancements in

climate change alteration studies are required to inform water
resource planners and managers of the magnitude and sour-
ces of uncertainty in future hydrologic projections. In partic-
ular, of interest is whether projected changes in streamflows
are important relative to the baseline error of the hydrologic
modeling process. A statistical framework for investigating
this question was presented here. Our approach was able to
propagate uncertainty from a hydrologic model into future
streamflow projections and integrate that uncertainty with
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other sources, producing a more complete uncertainty analy-
sis of future hydrology under climate change.

[63] This study employed a very simple but common
approach for quantifying future climate uncertainty based
on an ensemble of future climate projections. More compre-
hensive approaches exist, including those that treat climato-
logical uncertainty with formal probability distributions
[Tebaldi et al., 2005]. These approaches present an interest-
ing possibility of recasting the entire cascade of model
results in a probabilistic framework. However, GCM simu-
lations are projections, not predictions, and therefore a limit
likely exists for how useful direct GCM output will be in
developing reliable bounds on future climate. It is difficult
to compare the raw projections with observations in mean-
ingful ways to assess skill and error, and current practices
that rely on a comparison of the marginal distributions of
GCM simulations against those of the observations provide
‘‘only a limited kind of confidence’’ [Stainforth et al.,
2007b]. In addition, the downscaling methods are often cali-
brated over the entire historic record, leaving cross-valida-
tion approaches impossible. Nonetheless, the framework
presented here allows a comparison of the range of climate
projections with hydrologic modeling uncertainty.

[64] The application to the White River Basin demon-
strates how a comprehensive treatment of uncertainty can
reveal varying levels of precision associated with hydro-
logic alterations across a spectrum of hydrologic responses.
This information could be very valuable in assisting water
resource managers with decisions regarding adaptation
measures to possible climate changes. Depending on the
projected direction and severity of climate change impacts
on regional hydrology, water resources investments for ad-
aptation can be quite expensive. The possible regret associ-
ated with those investments increases rapidly with the
uncertainty surrounding future hydrologic alterations, par-
ticularly key design flow statistics. Since the minimization
of regret is often used to govern decisions regarding large
capital investments, a reliable quantification of future
hydrologic uncertainty is critical for a robust application of
decision theory to climate change adaptation investments in
the water sector. This study provides a meaningful contribu-
tion toward that end. Future work will propagate future
hydrologic uncertainties developed in this study through sys-
tems and environmental models to understand the impacts of
integrated hydrologic and climate uncertainties on decision-
making in fields like water resources and ecohydrology.
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