

Purpose & Need

The **purpose** of the Designing Sustainable Landscapes (DSL) project is to:

 Assess the capability of current and potential future Landscape landscapes to provide integral ecosystems and suitable Change habitat for a suite of • Assessment representative species, and provide guidance for strategic Design habitat conservation LCAD Model

Conceptual Framework

Adaptive Landscape Conservation Design

Generalized Approach

Establish ConservationGoals & Objectives

Goals... broad statements about desired future conditions -- associated with the integrity of ecological systems and the performance of focal species' populations over the long term.

Objectives...SMART objectives pertaining to specific ecological functions and population performance measures.

Generalized Approach

Design ConservationNetwork

Network Criteria:

- Diversity full suite of ecological systems and species
- Redundancy within and among core areas
- Ecological integrity high intactness, resiliency and adaptive capacity of ecological systems
- Habitat-climate capability high likelihood of species occurrence
- Connectivity facilitate ecological flows across scales
- Configuration balance between aggregated and welldistributed core areas

Generalized Approach

Design ConservationNetwork

Multi-scale framework:

Region: regional context; connectivity

Landscape: goals and objectives;

Focal scale

conservation targets; conservation network; monitoring & evaluation

Sub-landscape: distribution of core areas

Generalized Approach

Design ConservationNetwork

Spatial strategy:

- Core... concentrated areas of high ecological value
- Buffer... around core areas to prevent future degradation
- Connect... linkages between core areas to facilitate connectivity

How much, of what, where & Why

Generalized Approach

Implement ConservationNetwork

Tactics:

- Protect...
 buy it
- Manage...
 manipulate it
- Restore...
 recreate it
- Others...

Generalized Approach

Monitor Conservation
 Network

Types of monitoring:

- Implementation... were the conservation *targets* met (e.g., CBC acreage protected, managed, restored)?
- **Effectiveness...** were the conservation *objectives* met (e.g., measures of ecological function and species' population performance)?
- Validation... test assumptions about cause-effect relationships between the conservation targets and the conservation goals and objectives

Generalized Approach

- Evaluate Conservation
 Network
 - Evaluation... scientific analysis and summary of the data collected from monitoring; intended to quantitatively and qualitatively determine whether the conservation objectives (and thus the conservation goals) have been met and, if not, determine why not.

Generalized Approach

- Adjust Landscape
 Conservation Design
 - Adjustment... adjust the conservation network based on the results of the monitoring and evaluation as needed to meet the conservation goals.
 - ✓ Modify conservation targets (e.g., increase core area, change weighting of ecosystems and species)
 - ✓ Modify tactics used in each CBC stage (e.g., increase restoration in cores, increase management of buffers)
 - ✓ Modify goals/objectives in light of monitoring results, scientific knowledge and socio-economic changes

Detailed Approach

Adaptive Landscape Conservation Design

Detailed Approach

Establish ConservationGoals & Objectives

Goal 1: Ecological integrity

Maintain a diverse suite of *integral* ecological systems that, by definition, are capable of sustaining important ecological *functions* over the long term.

Objectives:

SMART objectives pertaining to specific ecological *functions* (tbd)

Detailed Approach

Establish ConservationGoals & Objectives

Goal 2: Focal species

Sustain populations of a specified suite of focal species within the current and future capability of the landscape and the limitations imposed by climate change.

Objectives:

SMART objectives pertaining to focal species populations (tbd)

- Design: Chose multiscale framework
 - Region...
 Northeast
 - Landscapes...
 TNC ecoregions

 (adopted from Bailey and Cormer)
 - Sub-landscapes... watersheds (HUC 8 level)

Detailed Approach

- Design: Establish
 Conservation Targets
 (for core areas)
 - 1. Weight ecological systems
 - 2. Establish <u>targets</u> for ecological systems
 - 3. Weight focal species
 - 4. Establish <u>targets</u> for focal species

How much of what?

Indices:

- Regional ubiquity
- Landscape ubiquity
- Landscape importance
- Index of ecological
- Other (expert opinion)

Detailed Approach

- Design: Establish
 Conservation Targets
 (for core areas)
 - 1. Weight ecological systems
 - 2. Establish <u>targets</u> for **e**cological systems
 - 3. Weight focal species
 - 4. Establish <u>targets</u> for focal species

How much of what?

- Proportion of the undeveloped landscape
- Adjust by weight for each ecological system

Detailed Approach

- Design: Establish
 Conservation Targets
 (for core areas)
 - 1. Weight ecological systems
 - 2. Establish <u>targets</u> for ecological systems
 - 3. Weight focal species
 - 4. Establish <u>targets</u> for focal species

How much of what?

Indices:

- Regional ubiquity
- Landscape ubiquity
- Landscape importance
- Climate vulnerability
- Landscape capability
- Zones of uncertainty
- Protected status
- Other (expert opinion)

Detailed Approach

- Design: Establish
 Conservation Targets
 (for core areas)
 - 1. Weight ecological systems
 - 2. Establish <u>targets</u> for ecological systems
 - 3. Weight focal species
 - 4. Establish <u>targets</u> for focal species

How much of what?

- Proportion of the undeveloped landscape
- Adjust by weight for each focal species

Detailed Approach

- Design: Identify
 core areas
 - 1. Create selection index based on coarse filter
 - 2. Select core areas to meet coarse filter targets
 - 3. Create selection index based on focal species
 - 4. Select additional core areas to meet focal species targets

- Current IEI grid
- Future IEI grid
- Adaptive capacity grid
- External products?
- Weighted mean
- Quantile scale

Detailed Approach

- Design: Identify
 core areas
 - 1. Create selection index based on coarse filter
 - 2. Select core areas to meet coarse filter targets
 - 3. Create selection index based on focal species
 - 4. Select additional core areas to meet focal species targets

Detailed Approach

- Design: Identify
 core areas
 - 1. Create selection index based on coarse filter
 - 2. Select core areas to meet coarse filter targets
 - 3. Create selection index based on focal species
 - 4. Select additional core areas to meet focal species targets

- Current COA grid
- Zone of persistence grid
- Zone of expansion grid
- External products?
- Weighted mean
- Quantile scale

Detailed Approach

- Design: Identify
 core areas
 - 1. Create selection index based on coarse filter
 - 2. Select core areas to meet coarse filter targets
 - 3. Create selection index based on focal species
 - 4. Select additional core areas to meet focal species targets *

- Design: Create Buffers
 - 1. Buffer terrestrial and wetland ecosystems within core areas
 - 2. Buffer aquatic ecosystems within core areas
 - 3. Combine buffers

- Design: Delineate Corridors
 - 1. Find links between core areas (random low-cost paths)
 - 2. Compute conductance index
 - 3. Delineate corridors

Detailed Approach

- Implement: Land Protection
 - Core Areas
 - 1. Prioritize core areas
 - 2. Prioritize lands within core areas

Node importance index

- Implement: Land Protection
 - Core Areas
 - 1. Prioritize core areas
 - 2. Prioritize lands within core areas

Detailed Approach

- Implement: Land Protection
 - Corridors
 - 1. Prioritize corridors
 - 2. Prioritize lands within corridors

Link importance index

Detailed Approach

- Implement: Land Protection
 - Corridors
 - 1. Prioritize corridors
 - 2. Prioritize lands within corridors

Conductance index

- Implement: Land Management
 - Climate vulnerability index
 - Landscape capability indices (Current, none, shift, contract)
 - Zones of uncertainty indices (persist, contract, expand)
 - Protected status index
 - Core area persistence index
 - Core area importance index

- Implement: Land Management
 - Landscape capability indices... based on sum of species' prob(occur) values across cells within the *region* or *landscape* under different climate change assumptions

			Species Response to Climate Change					
				1	Immediate Range Immediate Range			
			None		Contraction		Shift	
Species	Statistic	2010 (ha)	2030	2080	2030	2080	2030	2080
blbw	mean	184,281	1.01	1.01	0.87	0.21	0.87	0.21
	min		1.01	1.00	0.83	0.12	0.83	0.12
	max		1.01	1.01	0.90	0.32	0.90	0.32
woth	mean	398,441	1.00	0.99	1.00	0.99	1.00	0.99
	min		1.00	0.98	1.00	0.98	1.00	0.99
	max		1.00	0.99	1.00	0.99	1.00	1.00

- Implement: Land Management
 - Landscape capability indices... based on sum of species' prob(occur) values across cells within the *region* or *landscape* under different climate change assumptions

		LC (ha)	Range Shift	
	Species	2010	2080	
Most vulnerable	blbw	184,281	0.21	
	blpw	943	0.48	
	nowa	14,734	0.54	
	oven	424,205	0.98	
	lowa	16,651	0.99	
	woth	398,441	0.99	
Least vulnerable	rsha	182,978	1.01	
Least vuillerable	mawr	3,633	1.28	

- Implement: Ecological Restoration
 - Road passage structures
 - Road-stream crossings
 - Dams
 - Wetland restoration

- Implement: Ecological Restoration
 - Road passage structures
 - Road-stream crossings
 - Dams
 - Wetland restoration

- Implement: Ecological Restoration
 - Road passage
 structures
 - Road-stream crossings
 - Dams
 - Wetland restoration

Detailed Approach

Adaptive Landscape Conservation Design

