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Abbreviations	Comment by US Fish & Wildlife Service: Potential acronyms to add include NALCC and EBTJV
	BRT
	boosted regression tree

	ASI
	anthropogenic stress index

	HQI
	natural quality index

	CV
	cross-validation

	DS
	Downstream Strategies

	FHP
	Fish Habitat Partnership

	GIS
	geographic information systems

	GLB
	Great Lakes Basin	Comment by US Fish & Wildlife Service: Appears to be carry-over from a different report. Only use of abbreviation is in the data dictionary (which itself may be a carry-over).

	NHD
	National Hydrography Dataset

	NPDES	Comment by US Fish & Wildlife Service: NPDES does not appear in the report other than in this table
	National Pollutant Discharge Elimination System

	ROC
	receiver operating characteristic

	USFWS
	United States Fish and Wildlife Service
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[bookmark: _Toc421891273]Introduction
[bookmark: _Toc421891274]Project Background
[bookmark: _Toc421891275]NALCC Funding
DS was contracted by the North Atlantic Landscape Conservation Cooperative (NALCC) to perform aquatic assessments across the extent of the NALCC, which ranges from Maine to Virginia. These assessments were to be based off of previous work DS performed to assess habitats for numerous fish species for the Midwest Fish Habitat Partnerships. Brook trout were identified as a potential species of interest for an assessment and because of the interest and availability of partners from the Chesapeake Bay Program, a brook trout model for the entire Chesapeake Bay watershed was developed. The NALCC supported and coordinated the project in collaboration with , but thea review team that included members from United States Fish and Wildlife Service (USFWS), the United States Geologic Survey (USGS), the Eastern Brook Trout Joint Venture (EBTJV), Atlantic Coastal Fish Habitat Partnership, West Virginia University (WVU), and numerous state fish and wildlife agencies.	Comment by US Fish & Wildlife Service: Even if they didn’t participate on the brook trout review team, I want to recognize their oversight role in the overall project.
Generally, the models, analyses, and data produced as a result of this project are intended to enable a unique, broad, and spatially explicit understanding of the links between natural habitat conditions and human influences on aquatic habitats. Specifically, the outcomes can be utilized to conduct fish habitat condition assessments based on a range of stakeholder-specified metrics and modeling endpoints to help determine natural drivers of aquatic conditions, as well as primary stressors to brook trout within the Chesapeake Bay watershed. The ultimate goal is to improve understanding of how local (e.g., stream water temperature ) and network(e.g., upstream agriculture) processes influence stream conditions in the region and to provide additional knowledge, data, and tools to help prioritize and inform conservation and restoration actions throughout the Chesapeake Bay watershed.
[bookmark: _Toc421891276]Context with other assessments in North Atlantic
This report summarizes the predictive models and tools for brook trout that are part of the inland portion of the NALCC funded aquatic assessment project. Additional models of winter flounder and river herring are currently being constructed to complement this brook trout model for the North Atlantic region.  Details of marine and diadromous fish habitat assessments will be described in separate reports.
[bookmark: _Toc421891277]Previous applications in Midwest Region	Comment by US Fish & Wildlife Service: If this section is going to be included, it should be introduced or concluded with a sentence explaining why it is relevant to this report. I’m assuming that the point is that this framework / approach / experience or whatever served as the basis for the brook trout work but that is not obvious to readers. Maybe another point is that the web-based platform will also be used for this project. The level of detail here may be helpful if it saves discussion later in the report but otherwise may be unnecessary.
DS’s inland fish species aquatic habitat modeling approach was developed for several Fish Habitat Partnerships (FHPs) in the Midwest region and was funded by the United States Fish and Wildlife Service (USFWS). These assessments utilized the existing National Hydrology Dataset (NHD) and the NHD Plus (Horizon Systems 2012) supplemental information on hydrology networks. Data included discrete catchment polygons that delineated the local drainage area for each specific stream segment. These catchments were utilized as our modeling unit, and predictor data wereas summarized within each distinct catchment. Response data wereas likewise summarized within catchments where available in order to create our predictive models, the results of which were also extrapolated to all catchments within the defined study areas. In total over 30 distinct models were created for the six FHPs within the Midwest., These model results were distributed as stand-alone geodatabases and within a desktop decision support tool which ran using desktop ArcGIS environment. Currently the decision support tool is being developed as a web-based application to provide improved accessibility to partners and stakeholders. 
[bookmark: _Toc421891278]Review of previous brook trout assessments in Chesapeake Bay
Two important assessments of brook trout distributions within the EBTJV range have recently been conducted by other researchers (EBTJV 2015, Deweber and Wagner 2015).  The EBTJV (2015) assessment utilized data on known locations of brook, brown and rainbow trout within the EBTJV boundary to classify catchments 1:100K catchments according to the population types found within them. Population types included: brook trout present (exotics present) and brook trout present (exotics absent). They then used a set of criteria to extrapolate classifications of brook trout and exotic trout presence upstream. Remaining areas were classified as absences.  Patches were then defined as clusters of catchments where brook trout are present. This assessment produced a categorical assignment of brook trout populations, both at the catchment and patch scale. 
DeWeber and Wagner (2015) created a predictive model for brook trout at the extent of the entire EBTJV. They used data on brook trout presences and absences within a Hierarchical Bayesian modeling framework to produce a predicted probability of brook trout presence for each 1:100K catchment within the EBTJV range. This predictive model utilized a modeled stream temperature variable (DeWeber and Wagner 2014) along with other land use characteristics as predictor variables.
[bookmark: _Toc421891279]Justification of DS assessment 
Stakeholders from within the Chesapeake Bay watershed desired a statistically valid predictive model that captured underlying cause and effect relationship between habitat characteristics and brook trout within the Chesapeake Bay. By building our model for only the Chesapeake Bay watershed (as opposed to a larger, regional extent), it produced results that are not impacted by data, processes, or relationships outside of the Chesapeake Bay watershed. During a case study of scale (DS, white paper), we found that when decreasing the extent of the model, that the accuracy of prediction increased in focal watersheds.	Comment by jclingerman: We need to reference this one
Furthermore, a key objective of the NALCC project is to produce a decision support tool with the capacity to run scenarios of how management actions may benefit brook trout habitat. To do this, we need a modeling structure that can be run efficiently within a web-based application. The statistical method we use (boosted regression trees, described in a subsequent section) enables us By utilizing BRT, we were able to quickly produce quantitative measures of probability of presence, natural quality, and stress because BRT can be run in a matter of seconds within the program R. This allows for the creation of an “on-the-fly” scenario-based decision support tool (See Futuring Tool section for more description of this tool).  The other existing brook trout models cannot be used in this manner.
[bookmark: _Toc421891280]Objectives
The over-riding objective of this project was to construct a useful Decision Support Tool built upon a and validated a predictive model of brook trout distributions both under current climate regimes and under a variety of potential future climate regimes.  
Specifically, we:
1 – Constructed and validated a boosted regression tree model that could reliably estimate the probability of brook trout occurrence in 1:100K scale catchments throughout the Chesapeake Bay watershed;
2 – Used BRT model outputs to calculate measures of underlying natural habitat quality and anthropogenic stress; 
3 – Assessed future climate scenarios and the potential impact to brook trout populations (change in occupancy, stress, and natural habitat quality); and
4 – Created analytical tools to facilitate visualization of data and model results input data, prioritization of conservation actions, and estimation of brook trout habitat response to specific restoration actions under current and future climate scenarios.
A diagram of the general assessment process is outlined in Figure 1. DS acquired landscape and aquatic data from multiple sources to develop models and tools for visualizing expected current and potential future conditions and for prioritizing management actions.
[bookmark: _Ref301450551][bookmark: _Ref301450419][bookmark: _Toc302636414][bookmark: _Toc365989875][bookmark: _Toc417561781]Figure 1: Diagram of the habitat assessment process
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[bookmark: _Toc421891281][bookmark: _Ref421891543]Assessment Overview of Assessment Methodology
[bookmark: _Toc421891282]Data
[bookmark: _Toc421891283]Predictor Variables
The predictor variables were typically measures of land use or land cover derived from GIS, such as percent impervious surface area or road crossing density. Although the response variable was always measured at the local scale (e.g., individual sample site on a stream), tThe predictor variables were compiled at multiple scales, including the local scale (e.g., single 1:100k National Hydrography Dataset (NHD) stream catchment), or the network scale (e.g., all upstream catchments and the local catchment). Predictor data consisted of both natural variables (such as geology or elevation) and data we classified as anthropogenic in nature. Anthropogenic predictors included predictors such as agriculture, impervious surfaces, and mining.
[bookmark: _Toc421891284]Response Variable
The response variable in a BRT model can be count data, continuous data, or binary data. The response variable for this project was the binary presence-absence of brook trout. DS compiled fish sample data from several state fish and wildlife agencies and then utilized the most recent sample within each catchment to create the final presence-absence response for modeling. This resulted in a single value of presence-absence for each catchment. Although the predictor variables were compiled at multiple scales, the response variable was always measured at the local scale (e.g., individual sample site on a stream).
[bookmark: _Toc421891285]BRT 
The statistical methodology utilized within the Midwest FHP assessments was boosted regression trees (BRT), a machine learning statistical method. This method was selected after careful review of many statistical methodologies. DS staff and partners, along with the stakeholders for the FHP assessments, decided upon BRT over competing methodologies after comparing and contrasting the strengths and weaknesses of each. BRT models combine decision trees and boosting methodologies, which often result in better cross-validated models than other methods (Elith et al., 2006), including CART. Decision trees are advantageous because (1) they can incorporate any type of predictor data (binary, numeric, categorical); (2) model outcomes are unaffected by differing scales of predictors; (3) irrelevant predictors are rarely selected; (4) they are insensitive to outliers and non-normalized data; (5) they can accommodate missing predictor data; (6) they can accommodate co-varying predictor variables; and (7) they can automatically handle interactions between predictors (Elith et al., 2008). The boosting algorithm used by BRT improves upon the accuracy of a basic regression tree approach by following the idea that averaging many models offers efficiency over finding a single prediction rule that is highly accurate (Elith et al., 2008). The software used to create the BRT models was R utilizing the ‘gbm’ package and source code from Elith et. al 2008 supplemental materials. 
The modeling process results in a series of quantitative outcomes, including: predictions of expected current conditions of all catchments in the modeling area, measurement of prediction accuracy, a measure of each predictor’s relative influence on the predictions (i.e., variable importance), and a series of plots illustrating the modeled functional relationship between each predictor and the response. The predictions of current conditions were created by extrapolating the BRT model to all catchments within the modeling area. The unit of the predicted current condition for this assessment is the probability of brook trout presence. These current conditions are useful for assessing habitats and mapping the expected range of species. 
Predictive accuracy was quantified using an internal cross-validation (CV) method (Elith et al., 2008). The method consists of randomly splitting the input dataset into ten equally-sized subsets, developing a BRT model on a single subset and testing its performance on the remaining nine, and then repeating that process for the remaining nine subsets. Thus, the accuracy measures, such as the CV receiver operating characteristic (ROC) score and the CV correlation coefficient, are actually averages of ten separate ROC or correlation measurements. A standard error for the ten estimates is also provided. CV measures are designed to estimate how well the model will perform using independent data (i.e., data not used to build the model).
Additionally we evaluated predictive performance on a fully independent dataset. Ten percent of the available response data was held out to perform this test. We assessed the misclassification rates on this dataset utilizing five thresholds to indicate presence and absence. Thresholds to determine presence or absence were calculated using the following information: (1) training data prevalence, (2) where sensitivity equaled specificity, (3) maximum Kappa, (4) maximum percent correctly classified, and (5) the average of (2) and (3).
The BRT output includes a list of the predictor variables used in the model ordered and scored by their relative importance. The relative importance values are based on the number of times a variable is selected for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores for all variables is 100, where higher numbers indicate greater influence.
The BRT output also contains quantitative information on partial dependence functions that can be plotted to visualize the effect of each individual predictor variable on the response after accounting for all other variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots are not always a perfect representation of the relationship for each variable, particularly if interactions are strong or predictors are strongly correlated. However, they do provide a useful and objective basis for interpretation (Friedman, 2001; Friedman and Meulman, 2003).

[bookmark: _Toc421891286]Residual Analysis
Analyzing patterns of omission and commission may highlight regions where the model is performing well or poorly or could suggest missing explanatory variables. Residuals are calculated by the BRT model and are used to assess Type I and Type II errors. The residuals are a measure of the difference in the measured and modeled values (measured value minus modeled value). Negative residuals indicate over-predictions (predicting higher values than are true), while positive residuals indicate under-predictions (predicting lower values than are true).
In order to assess spatial structure in the residuals, we used the ‘ade4’ package within R to run a Mantel test. This test utilized distance matrices of both the station locations and the residual value to determine if there is spatial structure in the residuals. We used 9999 permutations of this method to estimate a precise p-value.
[bookmark: _Ref418780525][bookmark: _Ref418780867][bookmark: _Toc421891287]Derivation of Anthropogenic Stress Index and Habitat Quality Index
Characterizing anthropogenic stress and natural habitat quality of aquatic habitats is a useful and necessary process for helping land and fisheries managers identify place-based conservation and restoration strategies. A post-modeling process was used to characterize anthropogenic stress and natural habitat quality for all catchments within the study area. Stress and natural habitat quality indices and metrics were identified and calculated based on BRT model outputs, and details of those calculations are below.
Once developed, these indices of stress and habitat quality can be used to generate and visualize restoration and protection priorities by analyzing how stress reduction can increase the probability of brook trout presence. For example, areas of high natural quality and low stress could represent protection priorities, whereas areas of high natural quality and high stress may represent restoration priorities.  In addition, we can quantify how climate change may affect brook trout distributions through an effect on underlying natural habitat quality over time.
Anthropogenic stress
Stress indices are useful for evaluating anthropogenic landscape drivers that structure aquatic responses. Natural resource managers can use stress indices and metrics to assess how anthropogenic processes are impacting aquatic responses and can utilize this information to scite restoration projects in order to maximize efficiency. Individual stressors were identified by examining BRT model outputs, both the variable influence table and the functional relationship between predictor variables and response variable. Any predictor variable significantly affected by anthropogenic disturbance was included as a potential stressor.
Individual stress metrics were calculated by determining the increase in probability of presence for each catchment when for the statistical effect of that predictor variable was removed. A new predictor variable dataset was produced to calculate each individual stressor metric. The new predictor dataset contained the same values as the original predictor dataset except for a single anthropogenic variable for which a stress metric was calculated. For this variable, the values were all set to reflect “no stress.” This provided a hypothetical baseline that represented the removal of all stress from that predictor variable. The existing BRT model was then applied to the new hypothetical landscape data to provide an extrapolation of the current model assuming zero stress for that stressor. All the stressors used had examples of “no stress” in training dataset used to build the model, which ensures that calculations of stress were not derived by extrapolating the model beyond the range of the data. The difference between the current predicted probability of presence and the probability of presence under this “no stress” situation indicated the change that could be attributable to stress. This process was repeated for each stressor to generate individual metrics of stress on a potential scale of 0-1. Higher stress values indicated a larger change in predicted probability of presence after removing stress, and lower stress values indicated that the catchment was relatively unaffected by removing stress (Table 1). 

For each catchment, the individual stress metrics (e.g. agriculture stress, impervious surface stress, mining stress) were summed to produce an overall stress metric, the anthropogenic stress index (ASI). The generalized formulas for calculating individual stress metrics and ASI is as follows:


[bookmark: _Ref358210779][bookmark: _Toc365989920][bookmark: _Toc417561804]Table 1: Example of stress calculations
	Comid

	Current Condition Predictions
	Stressor 1 Predictions
	Stressor 1 Metric
	Stressor 2 Predictions
	Stressor 2 Metric
	Anthro. Stress Index (ASI)

	Catchment ID
	Predicted probability of occurrence using current landscape data
	Predicted probability of occurrence when stressor 1 removed
	(Stressor 1 pred – Current Pred)
	Predicted probability of occurrence when stressor 2 removed
	(Stressor 2 pred – Current Pred)
	Stressor 1 Metric + Stressor 2 Metric

	1234567
	0.80
	0.90
	0.10
	0.80
	0
	0.10

	1234568
	0.25
	0.50
	0.25
	0.35
	.10
	0.35

	1234569
	0.5
	0.7
	0.2
	0.55
	.05
	0.25


Natural habitat quality
Natural habitat quality metrics provide baseline information on the optimal potential condition of a catchment. We defined natural quality as the maximum probability of presence under a zero-stress situation; essentially, the highest attainable condition in the catchment. These metrics allow natural resource managers to further classify each catchment and target specific land-based conservation or restoration actions. 
The natural habitat quality index (HQI) was calculated directly from the BRT output. Metrics for ‘natural’ predictor variables were calculated using a different approach than for the stressor calculations detailed above. A single hypothetical ‘no stress’ dataset was created where all stressors were removed. The existing BRT model was then applied to this hypothetical predictor dataset, and the resulting probability of presence indicated the maximum condition attainable by removing all stress. This hypothetical situation where all stressors were zero was also represented in the training dataset, which ensures that these extrapolations are not outside of the range of the data used to build the model. The probability of presence calculated by the BRT model for this hypothetical ‘no stress’ dataset is the HQI and this value indicates the maximum condition expected in each catchment.
[bookmark: _Toc421891288]Applications
[bookmark: _Toc421891289]Hierarchical Visualization
A tool used to examine all the datasets used in the assessment process. Datasets include current conditions, stress and natural quality variables, socioeconomic information, and model results. Two scales of visualization are available: regional and local. The rRegional scale maps data by HUC12 for entire study areas, while the local scale maps catchment-level data within a single HUC8. All data from each scale can be mapped and exported.
[bookmark: _Toc421891290]Ranking/Prioritization
Users can rank catchments within a selected HUC8 watershed by selecting and weighting data based on user criteria. These variables can include modeling results and additional variables not used within the model—such as socioeconomic factors or data on other species. The tool will produce a new output that displays (based weights and criteria) catchments ranked based on users criteria. All data can be exported and mapped.
[bookmark: _Ref418766792][bookmark: _Ref418767140][bookmark: _Toc421891291]Futuring Tool
The futuring tool allows users to manipulate land use variables important to brook trout for specific catchments and recalculate condition and stress, both locally and downstream. It requires the ability to quickly rerun the model, which cannot be done with some other statistical methodologies.
Supplemental information on how to use these tools, and a case study detailing example scenarios can be found in the separate report “Chesapeake Bay Brook Trout Assessment 2015: Using decision support tools to develop priorities”.
[bookmark: _Toc421891292]Chesapeake Bay Brook Trout Model
[bookmark: _Toc421891293]Predictor Data
DS, in cooperation with the Review Team, arrived at a list of landscape-based habitat variables (Appendix A) used to predict brook trout throughout the region; those variables were also used to characterize habitat quality and anthropogenic stress. DS and the Review Team compiled a list of 45 predictors for evaluation. From that list, 35 variables were removed due to statistical redundancy (r > 0.6), logical redundancy, or because of a lack of model influence, resulting in a final list of 10 predictor variables for the BRT model and assessment. Most predictor variables were gathered from public sources, but modeled stream temperature was acquired from Tyler Wagner, U.S. Geological Survey, PA Cooperative Fish and Wildlife Research Unit. A detailed description of the modeled stream temperature variable can be found in DeWeber and Wagner (2014).	Comment by US Fish & Wildlife Service: As noted in my comments in Appendix, it looks like some or all of what’s listed is from a Greats Lakes project, not the North Atlantic LCC project
[bookmark: _Toc421891294]Response Data
DS compiled 16,261 unique stream fish collection records from 1995 to 2013, the details of which can be found in Table 2. A large portion of this data was also provided by Tyler Wagner. Other data were acquired by DS from state fish and wildlife agencies, or provided by coauthor Todd Petty. DS processed those data to create a presence-absence dataset for brook trout, which was comprised of data for 3,284 catchments. Figure 2 illustrates all of the sampling sites that were used to construct the model.	Comment by US Fish & Wildlife Service: See my comment on table
[bookmark: _Ref421529934]Table 2. Fish data sources
	Data Source 	Comment by US Fish & Wildlife Service: Acronyms should be defined or just write out the name. A couple are cryptic even to me, like MBSS (Maryland?)
	Data Provider
	Date range
	# samples

	PAFBC
	Tyler Wagner
	1995 - 2013
	7,203

	NYDEC
	Tyler Wagner
	1995 - 2007
	4,565

	MBSS
	
	1995 - 2001
	3,081

	VADGIF
	
	2001 - 2010
	611

	VADEQ
	Tyler Wagner
	1995 - 2012
	454

	WVDEP
	Tyler Wagner
	1997 - 2010
	245

	WVDEP
	Petty	Comment by US Fish & Wildlife Service: Is Petty really the right data provider, or did he transmit this from the actual data provider?
	2006 - 2012
	43

	WVDNR
	Petty
	2001 - 2010
	25

	WV Stream Classification Survey
	Petty
	2004 - 2009
	21

	REMAP
	Petty
	2001
	5

	Lara Hedrick
	Petty
	2002
	3

	MAIA
	Petty
	1997
	3

	EMAP
	Petty
	1997
	1

	NRSA
	Petty
	2009
	1
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[bookmark: _Ref313961328][bookmark: _Toc318463349][bookmark: _Toc417561783]Figure 2: Brook trout modeling area and sampling sites[image: ]
[bookmark: _Toc421891295]Final BRT Model
As described previously, wWe used BRT to develop a predictive statistical model for brook trout at the 1:100k catchment scale.  The BRT model was constructed within the R programming language (‘gbm’ package) with source code from Elith et. al (2008) supplemental materials. The model was used to calculate expected brook trout distribution (i.e., occupancy) as well as measures of natural habitat quality (HQI) and anthropogenic stress (ASI) at the 1:100k scale throughout the native range of brook trout within the Chesapeake Bay watershed. Portions of the Chesapeake Bay watershed outside of the historic range were not included in our analysis. We utilized the default settings for modeling building for most options, including using a 10-fold cross validation procedure and bag fraction = 0.75. Tree complexity (interaction depth) was set to 1 (this setting is necessary to ensure proper stress and natural quality calculations) and learning rate was set at 0.01. Learning rate was chosen after examination of holdout deviance plot produced from the BRT model, and ensuring the model did not come to resolution too quickly or too slowly. The final selected model was comprised of 4,450 trees. This model was created using 90% of the available response data (n = 2,949), with the remaining 10% held out for later model validation.	Comment by US Fish & Wildlife Service: Redundant with previous sections
Modeled stream temperature (DeWeber and Wagner 2014), which represents a natural habitat quality variable, was the single most important predictor variable in the model with a relative influence of 43%. The next most important predictor was an anthropogenic stressor, mean network imperviousness, with a relative influence of 22%. 	Comment by US Fish & Wildlife Service: What’s missing is any discussion on whether the functional relationships and relative influences make biological sense. Obviously I think you do. This is really the heart of the model and it would be valuable to justify this, at least for the top few variables. Ideally this would include a few citations. For example, stream temperature and agricultural land cover were among the 2 most important variables for DeWeber & Wagner. Percent agriculture was also important in Hudy  et al. 2008 N.Am. J of Fisheries Mgt. You could also note similarities if any to brook trout models you’ve developed for other regions. Also, you may want to comment on the decision to consider stream temperature to be non-anthropogenic. In looking at a DeWeber & Wagner manuscript I have on the temperature model, it does look like air temperature was the dominant influence on stream temperature so you’re on solid ground, but there are some variables reflecting anthropogenic influences as well such as forest and riparian forest.
[bookmark: _Ref418780343][bookmark: _Toc417561806][bookmark: _Ref418768592]Table 3: Relative influence of all variables in the final brook trout model
	Variable Name
	Variable Description
	Relative Influence
	Type of relationship

	mnjuly	Comment by US Fish & Wildlife Service: Why isn’t this variable (for example) not in Appendix A?
	Mean July Stream Temperature (predicted)
	42.67
	Negative

	IMP06C
	Mean network imperviousness
	21.59
	Negative

	Ag_pc
	Network percent agricultural landcover
	9.71
	Negative

	SLOPE_fix
	Slope of catchment flowline
	7.49
	Variable

	Precip
	Mean annual precipitation
	6.58
	Positive

	Log_Grass_pc
	Log of network percent grassland cover
	2.57
	Positive

	SoilpH
	Catchment soil pH
	2.53
	Negative

	Acid_geol_pc
	Network percent acidic geology
	2.51
	Variable

	Log_past_minepc
	Log of network percent past mining areas
	2.28
	Negative	Comment by US Fish & Wildlife Service: This one looks kind of weird to me – maybe more like a variable response, but I can’t figure out what’s going on with the deciles in this plot

	Log_Wet_pc
	Log of network percent wetland cover
	2.08
	Variable


Note: Individual variables are highlighted according to whether they were determined to be anthropogenic (gray shading) or natural (no shading). Negative relationships indicate that general trends show that as the predictor increases, the likelihood of brook trout decrease. Positive relationships indicate the general trend is that likelihood of brook trout increases as the predictor variable value increases. 


The function plots for the model, which show the marginal effect on the response variable (logit(p)) (y-axis) as the predictor variable (x-axis) changes, are shown in Figure 3 for the nine most influential variables in the brook trout model (Table 3: Relative influence of all variables in the final brook trout model). The dash marks at the top of each function represent the deciles of the data used to build the model. The plots for all 10 variables are shown in Appendix B.
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[bookmark: _Ref418768575][bookmark: _Toc417561784]Figure 3: Functional responses of the dependent variable to individual predictors of brook trout[image: C:\DS_Shared\Dropbox\Midwest FHP\ORBSARP\Modeling_output_data\Great_River_Species\Great_River_Species_Function_Plot_Page-1.jpeg]

Note:Y-axis is logit-scale probability of presence. Only the top nine predictors, based on relative influence (shown in parentheses; see Appendix Afor descriptions of variable codes), are shown here. See Appendix B for plots of remaining predictor variables.	Comment by TYLER WAGNER: Also, can’t you create these plots with better x-axis labels, i.e., don’t just use the variable name as the axis label: they are poorly written as axis labels. The plot could also be cleaned up by reducing the spacing between plots and removing the y-axis labels for all except the plots on the left side.

Jason Response-This is possible but surprisingly difficult and time consuming. For now, I’m leaving as is to keep the process moving, but will try to revise for final draft/publication
[bookmark: _Toc421891296]Model Validation
The model had a CV correlation statistic of 0.759±0.008 and a CV ROC score of 0.929±0.005 and it explained 55% of the deviance in the response data. The remaining 10% of the available response data (n = 333) was held out to perform independent testing. We assessed the misclassification rates on this dataset utilizing five thresholds to indicate presence and absence. These thresholds represent several commonly used thresholds, and also one value we used to provide further summary (average of sensitivity = specificity and maximum kappa). Total misclassification rates ranged from 18.0% – 18.9%, commission error ranged from 7.5% - 10.2%, and omission error ranged from 8.1% - 11.4% (Table 4). 
[bookmark: _Ref412039153][bookmark: _Toc417561805]Table 4. Model misclassification rates
	Threshold
	Threshold Justification
	Commission Error
	Omission Error
	Total Error

	0.38
	Sensitivity = Specificity
	10%
	8%
	18%

	0.4
	Training data prevalence
	10%
	9%
	19%

	0.42
	Average of Sens=Spec & MaxKappa
	9%
	9%
	18%

	0.44
	Maximum Kappa
	9%
	9%
	18%

	0.5
	Maximum Percent Correction Classified (PCC)
	8%
	11%
	19%



[bookmark: _Toc421891297]Map of current brook trout occupancy
Brook trout probability of presence was calculated for all 1:100k stream catchments in the study area using the BRT model. The predicted probability of presence ranged from 0 to 1, where 0 = absent and 1 = 100% probability of presence. The mean predicted probability was 0.33. Of the total 51,474 catchments in the Chesapeake Bay watershed and also within the EBTJV historic distribution line, there were 9,605 catchments with a predicted probability of presence greater than 0.75 and 6,279 catchments where the probability of presence was between 0.5 and 0.75. These results are mapped in Figure 4.
[bookmark: _Ref313961593][bookmark: _Toc318463351][bookmark: _Toc417561785]Figure 4: Expected brook trout distribution[image: ]

Spatial Residuals
The spatial distribution of residuals is shown in Figure 5. The results from the Mantel showed a simulated p-value of 0.001 and an r=0.103. This indicates that the sample locations near one another are more likely to have more similar residual values than sample locations with a larger geographic distance between them. The p-value and r-value indicate that this relationship is statistically significant criteria at the p = 0.001 level.  The clustering of residuals suggests that there may be additional landscape scale information that could be used to improve the predictive power of the BRT model.	Comment by US Fish & Wildlife Service: Ie, spatial autocorrelation; were you unable to account for this, or decided not to?


[bookmark: _Ref314745179][bookmark: _Toc318463352][bookmark: _Toc417561786]Figure 5: Distribution of brook trout model residuals by sampling site[image: ]

Comparison of occupancy predictions with EBTJV and Wagner model
Our predicted occupancy values are comparable to the DeWeber and Wagner predictions for the same region. Figure 6 shows a scatter plot of predicted occupancy of each methodology plotted against one another, where R2=0.71 when fitting a linear trendline (not shown). Within Figure 6, the points are plotted with a solid loess line, and dashed line where y=x, which would indicate trend expected if both methodologies predicted equal occupancies for each catchment. The trends are quite similar, but the DeWeber and Wagner predictions are generally less than our predicted occupancies. 	Comment by US Fish & Wildlife Service: Something is missing here. Need something like this being a smoothed regression line to fit the points; it doesn’t make sense to say the points are plotted as a line.
When evaluating model accuracy for catchments with predictions for both models, we found that our model’s total error rate was lower than the DeWeber and Wagner total error rate when using a presence-absence threshold equal to training data prevalence for each model. The DeWeber and Wagner model’s false-positive rate was very good, at approximately 1.7%, but the false-negative rate was 22.6%. Our model showed a more balanced error distribution, with 8.6% and 6.1% false-positive rates and false-negative, respectively. This indicates that for the Chesapeake Bay watershed, the DeWeber and Wagner model is very conservative and consistently seems to under-predict brook trout occurrence rates. 
Some of this variation between values and predictive capacity is likely due to the different predictor variables utilized or differences in statistical structure between BRT and hierarchical bayesian regression.  A recent study comparing the predictive power of these approaches found that BRT models consistently outperformed hierarchical bayesian logistic regression (Fleishman et al. 2014).	Comment by US Fish & Wildlife Service: I don’t doubt this, but is this necessary? I’d rather not start a model fight with Penn State in this document. All the other reasons seem sufficient.
A portion of the remainder in the variation is likely do to the differing extents to which each model was created.  The DS model extent was the Chesapeake Bay watershed, whereas the DeWeber and Wagner model extent was the entire EBTJV range. It seem likely that influences outside of the focal Chesapeake Bay watershed are likely causing higher variation and lower predictive accuracy within the Chesapeake Bay watershed for the DeWeber and Wagner model.
[bookmark: _Ref417559360][bookmark: _Ref417559327][bookmark: _Toc417561794]Figure 6. Comparison with PSU predictions[image: ]
Likewise, our predictions show reasonable agreement with EBTJV (2015) classifications. Our predictions of occupancy average 0.7 in catchments classified as allopatric brook trout populations, 0.65 in sympatric brook trout populations, and 0.25 in catchments classified as absent (Figure 7).
[bookmark: _Ref417559346][bookmark: _Toc417561795]Figure 7. Comparison to EBTJV classifications[image: ]
[bookmark: _Toc421891298]Influence of exotic trout on brook trout occurrence
The presence of exotic trout species has been indicated by experts to be a major threat to brook trout across their eastern range (EBTJV 2006). The EBTJV (2006) report indicates that professionals deemed that exotic trout were a major stressor in Pennsylvania and New York, but were not identified in Maryland, Virginia or West Virginia as a major threat.  In developing our final BRT occupancy model for brook trout, we decided against using exotic trout as a predictor variable for several reasons. First, continuous information on exotic trout throughout the Chesapeake Bay watershed does not exist.  Consequently, a model that includes exotic trout cannot be used to predict brook trout occurrence continuously across the Bay watershed.  Second, trout biologists from across the region disagree whether or not the presence of exotic trout actually serves as a stressor to brook trout and influence their current distributions. Third, because all trout share similar habitat characteristics, it is likely that brook trout and exotic trout distributions are highly correlated with similar landscape attributes (e.g., water temperature, forest cover, land use).  Consequently, a model that includes exotic trout may influence underlying relationships between brook trout and natural habitat variables.  	Comment by US Fish & Wildlife Service: Hmm, does anyone really think exotics have no effect? I could see this raising some hackles within the EBTJV. If you’re going to keep this, you may want to soften this (eg, “the extent to which” and drop “actually” rather than “whether or not”), or at least provide a reference to support this claim.
Nevertheless, in order to quantify the potential effects of exotic trout presence on brook trout occupancy, we conducted a sequence of post-modeling analyses.  First, we used the EBTJV (2015) classification strategy to indicate presence or absence of exotic trout species, and constructed another BRT model using this information as a predictor variable. Although the resulting model could not be extrapolated to all unsampled catchments, it would provide a quantitative measure of the influence of exotic species on brook trout distributions at the scale of the Chesapeake Bay watershed. 
This new BRT model indicated that information on exotic trout does provide substantial additional explanatory power (Figure 8).  However, as expected, we found that the statistical effect of exotics is an increased likelihood of brook trout presence. This is likely due to the fact that all trout species have shared habitat requirements. The curves of the other predictor variable’s function plots remained relatively unchanged as well.
[bookmark: _Ref421620585]Figure 8. Function plots for top nine predictor variables when including exotic trout presence as a predictor variable
[image: ]
As a second analysis, we examined the relationship between the occurrence of exotic trout and the residuals from our original BRT model (i.e., the model that did not utilize exotic trout presence as a predictor).  Highly negative residuals are indicative of areas where the model is “over-predicting” brook trout occurrence (i.e., predicting a high probability of occurrence but brook trout were absent).  In contrast, large positive residuals are indicative of areas where the model is “under-predicting” brook trout occurrence (i.e., predicting a low probability of occurrence, but brook trout are present).  If exotic trout are having a significant negative effect on brook trout occurrence, then we would expect sites classified as exotic trout only to have strongly negative residuals and for those residuals to be substantially more negative than sites classified as “no trout.”
[bookmark: _Ref421620649]Figure 9. Boxplot of model residuals by trout presence/absence
[image: ]
The results of this analysis indicate that areas classified as “exotic trout only” have residual patterns that are similar to those from areas classified as “no trout” (Figure 9), but when using ANOVA with a post-hoc Tukey test to determine difference in means, we find that there is a small, but statistically significant (p-value < 0.01) difference in the mean residual between the “exotic trout only” and “no trout” groups.  This suggests a measurable negative effect of exotic trout on brook trout occupancy.  Nevertheless, the actual difference between no trout and exotic only sites is very small, which suggests that numerous factors, including exotic trout, may be responsible for brook trout absences in high quality habitats. Other factors include: 1- undetected or unmapped stressors (e.g., abandoned underground mines), 2- isolation from core brook trout populations, 3- dispersal barriers, 4- brook trout detection errors, or 5- localized errors in predictions of water quality.  An important goal of future work should be to identify and quantify additional factors that may be affecting the predictive power of our current model, including exotic trout, and incorporating this information into the next model iteration.  
Our combined analysis (secondary BRT model plus residual analysis) suggests that the absence of information on exotic trout is not systematically affecting the explanatory / predictive power of our original BRT model.  This is not to say that exotic trout cannot, or are not, having negative effects brook trout populations.  There may be effects of exotic trout on brook trout abundance, or there may be localized effects on brook trout occurrence.  Nevertheless, there is little evidence that the effect on brook trout occurrence is so widespread as to undermine the application of the original BRT model at the scale of the Chesapeake Bay watershed.  	Comment by US Fish & Wildlife Service: Nice job with this paragraph!
The results of this analysis further suggest that the best way for stakeholders to use information on exotic trout is within the context of the ranking tool.  Stakeholders may very well want to prioritize conservation areas based on the presence or absence of exotic trout populations.  This can easily be done within the ranking tool that we will provide.  It is unnecessary for this information to be included in the occupancy model to be of value within the decision support tool.
[bookmark: _Toc421891299]Anthropogenic stress and Natural Habitat Quality
The variable importance table and partial dependence functions of the final BRT model were used to assess the potential stressors for the brook trout model. Within the model, there were three variables considered anthropogenic in nature (Table 3). These three stressors, network mean imperviousness (IMP06C), network agriculture land cover (Ag_pc) and log-transformed network percent past mining (Log_past_minepc), were used to calculate ASI for the brook trout model. Section details how ASI and HQI were calculated for each model.	Comment by US Fish & Wildlife Service: Text is missing
Maps of HQI and ASI illustrate the spatial distribution of natural habitat potential (i.e., HQI score) and anthropogenic stress (i.e., ASI score) in the Chesapeake Bay watershed. HQI and ASI scores are mapped in Figure 10 and Figure 11, respectively. The three metrics contributing toward the calculation of ASI are mapped in Figure 12 and Figure 14. HQI, ASI, and their metrics are all scaled on a 0-1 scale (see Assessment Overview section for more details on HQI and ASI calculation). For HQI, higher values indicate higher natural quality, while higher values for ASI indicate higher levels of anthropogenic stress.
At first glance, it may seem that watershed-wide stress values from this assessment are overly optimistic and not representative of actual conditions, but it is necessary to consider that the stress index is showing areas where probability of presence for only brook trout is reduced because of stressors. In other words, stress can only be high if the natural habitat quality index is high.  If natural habitat quality is so low that brook trout would likely be absent independent of stress, then the stress index is necessarily low as well.  It is likely that stress on aquatic systems in general is much more widespread than is indicated in this model created specifically for brook trout. For all stress and natural quality indices, all catchments are shown, even in areas where the probability of presence is low. This is necessary and useful to consider areas outside of the current expected range where stress could have caused a historic population to be extirpated.	Comment by US Fish & Wildlife Service: Per my comments on the user guide I find this sentence confusing.	Comment by US Fish & Wildlife Service: This is a very helpful clarification

[bookmark: _Ref313961625][bookmark: _Toc318463353][bookmark: _Toc417561787]Figure 10: Habitat quality index for brook trout[image: ]
[bookmark: _Ref313961633][bookmark: _Toc318463354][bookmark: _Toc417561788]Figure 11: Total anthropogenic stress index for brook trout[image: ]
[bookmark: _Ref313961670][bookmark: _Toc318463360][bookmark: _Toc417561789]Figure 12: Most influential anthropogenic stress index metric for brook trout[image: ] 
Note: “most Influential” references the relative influence scores from the BRT model output.
[bookmark: _Toc417561790][bookmark: _Ref410122214][bookmark: _Toc318463361]Figure 13: Second most influential anthropogenic index metric for brook trout[image: ] 
Note: “most Influential” references the relative influence scores from the BRT model output.
[bookmark: _Ref412207189][bookmark: _Toc417561791]Figure 14: Third most influential anthropogenic index metric for brook trout[image: ]	Comment by Than Hitt: How are mainstems treated at the 1:100K catchment scale? It looks like the mining effect tracks a mainstem river (Juniata?) but that’s not “natural habitat” for BKT right?

Jason response – all network variables are accumulated the entire way downstream to the Ches Bay. The variables used in the model are percentages or proportions based on percent of land area contributing. The mainstems are handled the same as other catchments, where we allow the suite of predictor variables to determine likelihood of occurrence rather than using a hard threshold and not assessing larger streams. If you check the natural quality map above, you will see that the watershed in question does seem to have reasonable potential as BKT habitat a fair way downstream. The mining stress map here is indicating that the upstream mining is likely suppressing the probability of presence in those lower reaches to some degree. Some of the most downstream segments identified as stressed here seem to have a probability of presence of around 0.1 and if the stress level is at 0.3, the probability of presence with no mining would only be around 0.4, which is still likely not brook trout habitat, but some amount of 0.4 catchments would utltimately end up having brook trout, speaking statistically. Those mainstem reaches are not likely to be focal points of restoration, but amelioration of upstream mining impacts could potentially cause the mainstream to be more favorable further downstream. 
NOTE: “MOST INFLUENTIAL” REFERENCES THE RELATIVE INFLUENCE SCORES FROM THE BRT MODEL OUTPUT.
[bookmark: _Toc421891300]Climate Assessment
[bookmark: _Toc421891301]Objectives/Intro
For a coldwater obligate species such as brook trout, the impact of potential climate change is expected to shift and alter their its distribution across the landscape (Comte et al. 2013, Hickling et al. 2006). In this assessment we quantified the anticipated resiliency and vulnerability to climate change for brook trout in the Chesapeake Bay watershed. These quantifications will aid future restoration and protection priorities for brook trout, and can be analyzed alongside other factors such as stress and habitat quality to provide expectations of brook trout populations into the future. 
Our assessment is based on large-scale climatic factors, such as mean annual precipitation and mean annual or seasonal temperatures. Impacts resulting from changes in frequency or severity of single-day storm events are beyond the scope of this assessment. Furthermore, it is the belief of the authors that impacts from single-day events may have more impact on abundance of brook trout rather than occupancy, which is utilized as the response in these studies.	Comment by US Fish & Wildlife Service: Are there any other uncertainties or caveats that should be conveyed in this section or otherwise in the climate assessment? One that comes to mind is that this is not a dynamic population model / is not predicting actual population responses, but simply is assuming current habitat-occurrence relationships will persist in the future.
[bookmark: _Toc421891302]Methods
[bookmark: _Ref412213379]Data
In our analysis, two predictor variables from the model described above were altered to capture potential future changes in climate: mean July stream temperature and mean annual precipitation. These two variables were available for several future climate scenarios. All projected future climate information was based on the IPCC A2 emissions scenario, but several downscaled regional climate models (Hostestler et al. 2011) were used to represent more or less optimistic potential future situations. All the climate scenarios utilized for projections and their details are presented below in Table 5.
The mean July stream temperature used as a predictor variable for the model described above was produced as a result of the work of DeWeber and Wagner (2014). The authors of that study also produced future stream temperature predictions for a collection of climate models and future time frames (DeWeber and Wagner, unpublished data), and those data were used here to as a predictor variable for future scenarios. The stream temperature and annual precipitation data for each timeframe was averaged across a five year period that centered on the noted year. 
Mean annual precipitation used as a predictor variable for the predictive model was compiled as part of the NHD plus datasets (Horizon Systems, 2013) for each catchment. Theseis data wereas originally sourced from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). For future mean annual precipitation projections, we utilized predicted mean annual precipitation from NASA-compiled data from the time frames that matched those used for the projected stream temperatures. The NASA data aggregated 39 GCMs to produce a daily average precipitation rate for each 800 meter grid cell, and we averaged the data annually for each grid cell across the five year periods used in the unpublished DeWeber and Wagner data.	Comment by Than Hitt: Citation or url?

TODD- Please provide	Comment by US Fish & Wildlife Service: define
[bookmark: _Ref412212445][bookmark: _Toc417561807]Table 5. Climate scenario details
	Timeframe
	Predicted Stream Temperature
	Predicted Annual Precipitation

	
	Emissions Scenario
	Climate Model
	Mean July Temp (°C)
	Data Source
	Mean Annual Precip (mm)

	Current
	N/A
	N/A
	19.52
	PRISM/NHD+
	1068.70

	2042
	A2
	EH5
	19.72
	NASA 39-model Ensemble
	1147.05	Comment by US Fish & Wildlife Service: too many significant digits in this table (temp & esp.  precip)

	2042
	A2
	GFDL
	19.81
	NASA 39-model Ensemble
	1147.05

	2042
	A2
	GENMOM
	19.53
	NASA 39-model Ensemble
	1147.05

	2062
	A2
	EH5
	20.55
	NASA 39-model Ensemble
	1144.39

	2062
	A2
	GFDL
	20.18
	NASA 39-model Ensemble
	1144.39

	2062
	A2
	GENMOM
	20.27
	NASA 39-model Ensemble
	1144.39

	2087
	A2
	EH5
	21.74
	NASA 39-model Ensemble
	1159.17

	2087
	A2
	GENMOM
	20.58
	NASA 39-model Ensemble
	1159.17



Future status, habitat quality and stress
Predicted probability of presence for brook trout for future climate scenarios was calculated in a manner similar to the post-modeling methodology described above where the predictor variables used in the model were manipulated – this time to replace current climate data with projected future climate data. Probability of presence was calculated for each of the 8 climate scenarios identified above. 
Using the methodology described above in Derivation of Anthropogenic Stress Index and Habitat Quality Index, we also recalculated stress and natural quality under each potential climate scenario. This allowed us to calculate the differences between stress and natural quality between current and future conditions. For each climate scenario, the difference between current values and values calculated using future climate predictions was a way to indicate the potential effects of future climate scenarios.
Defining resilience and vulnerability	Comment by Than Hitt: Need to distinguish use here from the literature. For example see:
http://link.springer.com/article/10.1007/s100219900002
Resiliency and vulnerability were determined by analyzing losses or gains in natural quality. Underlying natural quality is directly impacted by changes in climate such as water temperatures and precipitation. Analyzing changes in modeled natural quality will indicate the anticipated impacts on brook trout occupancy. Areas anticipated to have reduced natural habitat quality index scores were determined to be vulnerable to future climate change scenarios, while resilient areas were expected to remain unchanged or increase in natural quality under future climate scenarios.   
[bookmark: _Toc421891303]Results/Discussion
Watershed-wide results
This assessment produced a large amount of data, not all of which is able tocan be shown in a meaningful way within this report. All data produced will be available within the web-based decision support tool that will be part of the deliverables for this project, and also in standalone tables. 
For this report, we have focused results and representative maps on two climate scenarios as examples of the data produced, both of which are from the 2062 time frame. This time frame is an actionable time frame (approximately 50 years), but is one far enough into the future that projected climate changes become more significant than projections at the 2042 time frame. The two downscaled regional climate models we will be presenting in this report are ECHAM5 (EH5) and GFDL. These were the two climate models that provided the greatest contrast in predicted temperature increases, with GFDL being more optimistic and EH5 being less optimistic. The third climate model analyzed here, GM, had results intermediate to EH5 and GM for the 2062 timeframe and are not shown in detail in this report. 
A summary of the climate effects from each scenario is shown in the histogram in Figure 15. The effect of climate projections can be seen in the histograms of change in natural habitat quality for the EH5 model, as higher magnitude reductions in habitat quality increase the further into the future the projections. This trend is evident, but to a lesser extent in the GM model,   while the GFDL model doesn’t show much differentiation between the 2042 and 2062 scenarios (projections for this model were not available for the 2087 time frame).
[bookmark: _Ref414541306][bookmark: _Toc417561796]Figure 15. Climate effect histograms for each climate scenario.[image: ]
A summary of mean values of the model results and stressors for each scenario and the current model outputs is shown below in Table 6. This table shows that the most optimistic climate scenario varies depending on the timeframe assessed, at least when considering the entire study area. For the 2042 and 2087 timeframes, the GENMOM (GM) climate model is the most optimistic, but for the 2062 timeframe, GFDL is the most optimistic. Likewise, the least optimistic model for each timeframe also varied. The GFDL model was the least optimistic model for the 2042 time frame, while the EH5 model was the least optimistic for the 2062 and 2087 timeframes. For all future scenarios, predicted probability of presence and the natural quality index for brook trout was reduced compared to current predictions when analyzing the entire Chesapeake Bay watershed. Generally, stress values were also reduced, which would be anticipated with a reduction in natural quality and probability of presence since only areas with brook trout can be stressed utilizing our methodologies.
[bookmark: _Ref413684350][bookmark: _Toc417561808]Table 6. Climate scenario result summaries
	Timeframe
	Emissions Scenario
	Climate Model
	Mean prob. of presence
	Mean natural quality
	Mean impervious stress
	Mean ag stress
	Mean mining stress
	Mean total stress

	Current
	n/a
	n/a
	0.336
	0.512
	0.081
	0.069
	0.003
	0.153

	2042
	A2
	EH5
	0.307
	0.471
	0.077
	0.065
	0.003
	0.144

	2042
	A2
	GFDL
	0.301
	0.465
	0.077
	0.064
	0.003
	0.144

	2042
	A2
	GENMOM
	0.32
	0.484
	0.077
	0.065
	0.003
	0.145

	2062
	A2
	EH5
	0.266
	0.422
	0.091
	0.06
	0.002
	0.134

	2062
	A2
	GFDL
	0.283
	0.444
	0.074
	0.062
	0.003
	0.139

	2062
	A2
	GENMOM
	0.28
	0.439
	0.073
	0.062
	0.003
	0.138

	2087
	A2
	EH5
	0.227
	0.37
	0.065
	0.052
	0.002
	0.12

	2087
	A2
	GENMOM
	0.276
	0.434
	0.072
	0.061
	0.003
	0.136



The maps below (Figure 16 and Figure 17) show the change in natural habitat quality, which is the measure of climate effect for every catchment within the Chesapeake Bay watershed for the 2062 EH5 and GFDL models. For visualization purposes only, we classified changes into five categories. These categories were major decrease, minor decrease, no change, minor increase, and major increase. The minor categories were defined as a change between 0 +/- 0.20, and the major categories were defined as a change greater than +/- 0.20.  
While the overall effect of future climate scenarios is negative for brook trout, that there are specific regions that will may be more resilient, and some are projected to have improved natural habitat quality. The areas identified to be resilient or improve show this result because of an increase in projected precipitation rates, which may moderate higher projected air temperatures or ameliorate effects from season low flow mortality. Figure 3 illustrates the functional relationship between predicted probability of presence of brook trout and these two climatic factors, showing how increases in precipitation result in higher probabilities of occurrence.
While the overall patterns of increase and decrease are similar for both the EH5 and GFDL 2062 scenarios, it is apparent that the GFDL model is more optimistic of the two scenarios presented here. The areas projected to be resilient or improve are larger under the GFDL, and the most vulnerable areas are of higher intensity under the EH5 scenario.
[bookmark: _Ref414548015][bookmark: _Toc417561797]Figure 16. Climate change effect for 2062 EH5 scenario.[image: ]
[bookmark: _Ref414548025][bookmark: _Toc417561798]Figure 17. Climate change effect for 2062 GFDL scenario.[image: ]
Using climate vulnerability and resilience to inform priority establishment
Utilizing future climate scenarios can allow natural resource managers to evaluate not only current conditions for restoration, but to also incorporate resiliency to climate change in decision making processes. This will allow for priorities for restoration to be established in areas where the work is expected to persist. Conversely, areas indicated as vulnerable to future climate scenarios can be identified and prioritized for actions that may ameliorate the impacts of warmer water. 
[bookmark: _Toc421891304]Hierarchical Establishment of Priorities: Case Study
Given that brook trout priorities will vary across the watershed, we are presenting a hierarchical methodology for utilizing the results from this assessment to inform restoration and protection priority establishment. The scenarios presented here utilize the current conditions indicated from the Chesapeake Bay brook trout model, as well as information on potential future brook trout habitat based on the 2062 EH5 climate scenario. This demonstrates the usefulness of varying types of data summarized at varying geographic scales.
[bookmark: _Toc421891305]Fishery Value Calculation
By evaluating the current status of the brook trout fishery, estimating lost fishery value due to landscape stressors, and estimating the potential change in future fishery condition due to climate; we can begin to develop broad scale conservation priorities at the HUC8 scale.  Here we apply a process for estimating functional stream length that was developed for identifying acid remediation priorities (Petty and Thorne 2005) and culvert replacement priorities (Poplar-Jeffers et al. 2009).  To estimate the current functional value of a given stream segment as brook trout habitat, we multiplied the length of the segment (km) by the current occupancy measure (varies from 0-1).  The final value can be interpreted as an ecological function weighted length of habitat.  This value can then be summed across all stream segments within a HUC12 or HUC8 watershed to provide a relative measure of current fishery value at the larger scales.  We can get a similar estimate of lost value for each segment by multiplying anthropogenic stress by the stream length.  Once summed across segments within a watershed, this gives us a measure of the fishery value that has been lost due to anthropogenic stress on the landscape.  Finally, we can multiply the change in natural habitat quality expected due to climate change by the stream length to get a measure of the potential lost fishery value that may result from climate change.  The combination of these three measures (current value, value lost due to stress, and potential value loss due to climate) provides important information for setting conservation priorities at hierarchical scales (e.g., segment, HUC12, HUC8).
[bookmark: _Toc421891306]HUC8-scale priority establishment
Protection example: One priority could be to protect remaining brook trout populations within highly degraded HUC8 watersheds, especially when those areas are projected to remain resilient to future climate perturbations. Using Figure 18, we can see that the two HUC8 watersheds that stand out as resilient to climate change (positive orange bar) in the figure above are Cacapon- Town and Gunpowder-Patapsco. Of these two watersheds, the “Gunpowder-Patapsco” has a very small amount of current fishery remaining (blue bar) and has lost quite a large amount of habitat due to stress (red bar). This watershed will be the focus of our first scenario, where protection of remaining populations should be a priority. 
Restoration example: From the same graphic in Figure 18, we can also identify those HUC8 watersheds best suited for restoration. Both the Upper James and Upper Susquehanna HUC8’s possess relatively strong current fishery values (blue bar) and have also lost considerable value due to anthropogenic stress (red bar). This indicates ample opportunity to reduce stressors and build from strong remaining populations. Since the Upper Susquehanna has lower overall vulnerability to future climate change, it will be spotlighted for a priority restoration scenario. 
[bookmark: _Ref421889519]Figure 18. Evaluation of HUC8 current, lost, and future brook trout habitat.[image: ] 

[bookmark: _Toc421891307]HUC12 scale priority establishment
Protection example: Within our first example in the Gunpowder-Patapsco, an analysis of the same factors as above (current, lost, and future brook trout habitat value) within each HUC12 can further direct the establishment of protection priorities. For directing protection of remnant populations, focusing on those areas most resilient to climate change would be beneficial to ensure protections are not undermined by future climate conditions. Given that, the two HUC12 watersheds on the far right of Figure 19 (20600030104 and 20600030101), would be watersheds to examine further for protection priorities. Areas with the highest overall remaining fishery would be other targets for this type of protection, so HUC12 watersheds 20600030401 (second from left) and 20600030404 (fourth from the left) would also fall into this type of protection priority. 
[bookmark: _Ref421889787][bookmark: _Toc417561800]Figure 19. Gunpowder-Patapsco evaluation of HUC12 current, lost and future brook trout habitat.[image: ]
Restoration example: Within the Upper Susquehanna HUC8, where brook trout populations are currently predicted to be strong, protection may still be applicable for the HUC12s with the best conditions, but to evaluate restoration priorities, identifying HUC12s with moderate to high current condition, moderate to high lost fishery, and with the lowest detrimental impacts from future climate scenarios would be appropriate. Figure 20 shows the HUC12s that would most likely match those conditions within the Upper Susquehanna HUC8 would be 20501010301 (highest current fishery and moderate lost fishery, near middle of chart) and 20501011313 (sixth bar from the right, relatively high current fishery, high lost fishery, and very low climate vulnerability).	Comment by US Fish & Wildlife Service: this sentence, with 7 phrases, is too long
[bookmark: _Ref414552324][bookmark: _Toc417561801]Figure 20. Upper Susquehanna evaluation of HUC12 current, lost and future brook trout fisheries.[image: ] 
[bookmark: _Toc421891308]Segment (Catchment)-Scale Priority Establishment
Ultimately, all on-the-ground actions need to happen at the stream segment level. The analyses of data at the HUC8 and HUC12 can help to prioritize the best larger watershed for specific actions, but regardless of the broader priorities, catchment-level priorities are what managers will use to site specific actions. At the segment level, we can analyze several factors simultaneously to assess the most ideal stream segments for protection or restoration. Additional review of habitat conditions is also more possible within a relatively small number of focal catchments.
Protection example: For this example, we focused on the ‘Little Falls’ and ‘Blackman Run-Western Run’ HUC12s identified in the HUC12 priority section. Catchment values were queried to show only those segments with high natural quality (>0.75) and high future natural quality (>0.75). The identified catchments (Figure 21) have high current fishery value and are anticipated be resilient to future climate scenarios. Upon further analysis of data for these catchments, we found these catchments to be highly agricultural (approximately 35% of land area) and relatively developed (7% mean imperviousness), so protection for these areas may include ensuring proper agricultural practices continue and that runoff from impervious areas is captured before entering streams. 
Restoration example: For the two HUC12s selected as restoration priorities within the Upper Susquehanna HUC8 (‘Upper Schenevus Creek’ and ‘Park Creek’), catchments were selected that have high natural quality (> 0.75), a current occupancy of 0.25 – 0.5, and high future natural quality score (> 0.75). This indicates segments (Figure 21) which have high underlying potential, slightly lower occupancy rates because of stress, a high future climate resiliency. These would be streams with good potential as brook trout habitat if restored. From further analysis, the main stressor for these 10 segments identified was agriculture, which averaged about 30% of the total land area. Likely restoration efforts for these areas may include exclusion fencing and implementation of other best agricultural practices.
[bookmark: _Ref414557669][bookmark: _Toc417561802]Figure 21. Hierarchical prioritization scenario.[image: ] 	Comment by US Fish & Wildlife Service: the 2 Park Creek versions look different
[bookmark: _Toc421891309]Prioritization Summary
The above scenarios provide only a few examples of how the these data can be used for priority establishment for brook trout in the Chesapeake Bay watershed. Applying a hierarchical approach that utilizes information summarized at various scales may provide the best watershed-wide priorities, but this approach could start at any level and continue to the segment level. For example, a state agency or watershed organization may only be concerned with the priorities within their work area. In such instances, groups could begin prioritizations at the HUC12 level, and establish priorities that matched their mission and conservation goals.
[bookmark: _Toc421891310]Discussion
[bookmark: _Toc421891311]Added value of this model
We believe this model and the analyses produced as part of it will provide additional information for managers and funders focused on the restoration and/or protection of brook trout. 
This model provided improved predictive power within Chesapeake Bay, when compared to previous similar modeling efforts. By not utilizing data outside of the Chesapeake Bay watershed, we know that the model unaffected by habitat-brook trout relationships from outside of the focal study area. 
As part of this effort, we also quantified the impacts each anthropogenic stressor had on brook trout occurrence rates and the underlying potential of brook trout habitat. These indices are critical in evaluating habitat restoration and protection priorities, and are additional products our effort produced that have not been fully accounted for in other efforts.
While mining impacts may not be widespread threats or stressors to brook trout across its entire range, there are significant portions of the Chesapeake Bay watershed impacted by current and historical mining. By incorporating mining as a predictor variable in our model, we were able to quantify these impacts that were unaccounted for in other efforts.
Our model, by utilizing BRT, provides the analytically-efficient statistical model necessary for incorporation into the futuring tool. This tool provides biologists, managers, and restoration experts a powerful tool for evaluating impacts of future land use conversions at a localized scale.
By extrapolating model results using future climate scenarios, we also provided estimates of potential loss of underlying fishery potential (i.e., natural habitat quality) resulting from climate change. This will allow managers to assess future conditions as well as current brook trout conditions when assessing restoration or management efforts.
All of the above components will be embedded into a web-based decision support tool that will provide all interested stakeholders with access to all data and tools compiled as part of this effort. This tool will also utilize relevant data from other related efforts to allow a very thorough repository for all data pertaining to brook trout within the Chesapeake Bay watershed.	Comment by US Fish & Wildlife Service: it would be good to prominently highlight how to get to the tool as soon as we can. This could go right up front in the document too.
[bookmark: _Toc421891312]Limitations and suggestion for future work
In general, while the estimates of probability of presence, index scores, HQI, and ASI generated through this assessment represent a useful and objective means for assessing aquatic habitat and prioritizing habitats for restoration or protection, there are some limitations that are important to consider.
While this model has been created for, and is highly accurate within the Chesapeake Bay watershed, its use is limited to only that geographic region. Results and habitat relationships cannot be applied to areas outside the study area, which ultimately restricts widespread use of this assessment. One suggestion for future work regarding the impact of model extent and scale is the need to examine the balance between statistically valid, region-wide models (e.g., DeWeber and Wagner model) and within-region specific models such as our assessment. Each model has applicability, and a detailed analysis of the tradeoffs and benefits of each type of assessment would be useful for future efforts. Furthermore, a line of future research should involve direct comparisons of BRT and logistic regression approaches in the Chesapeake Bay watershed.
Biological interaction with brown trout have been shown to decrease the occupancy of brook trout (Wagner et al. 2013), so the inclusion of biological interactions in future models could improve the precision of the model and the ability to quantify its influence on the response variable, given the proper scope and scale of assessment. For this assessment, data relating to non-native salmonids was examined to use as a predictor variable. After examination, it was determined that because of the similar habitat requirement of brook trout and non-native salmonids, that the presence of non-native salmonids would not be a useful predictor variable at the scale of this assessment. The modeling done by Wagner et al. (2013) only assessed conditions within streams that could support trout (brown or brook trout were sampled and the watershed size was less than 1,000 km2), but when assessing all stream reaches the relationship between exotic trout and brook trout typically is positive. By excluding non-trout streams, Wagner et al. (2013) were better able to isolate differences in brook trout occupancy related to changes in brown trout presence, rather than finding relationships in brook trout occupancy across a wider range of habitat conditions. In the latter situation, as in this assessment, where the influence of exotic trout is muddled by other habitat factors. Nevertheless, the biological interactions between non-native salmonids may account for some local variability in model results that were beyond the scope of this project:, but according to Elith and Leathwick (2009), this is a complex and difficult solution to implement.
All results generated through the modeling process are ultimately limited by the quality and scale of data used to generate them. In the future, the model can be improved by utilizing refined or higher quality predictor data. For example, many of the datasets used for predictor variables were based on a 30 meter grid cell (precipitation, land cover, impervious surfaces), and if resolution of those publically-available datasets improves to 10- or 1-meter grid cells that data would likely result in more accurate results. Data such as the mining predictor variable wereas based on data collected from multiple sources across states, and as such only the data that wereas similar across states was able tocould be utilized here while higher quality data only available in a certain state had to be omitted. 
Also adding additional predictor variables that are deemed appropriate at structuring brook trout populations could be beneficial. While we feel confident that the major factors influencing brook trout in the Chesapeake Bay have been included in this analysis, if future study indicates additional variables of importance, those should also be included. In the future, inclusion of more refined predictor variables or additional relevant predictor variables could improve both the precision of the BRT model predictions and post-modeling indices.
Another limitation is that the data and maps represent only a snapshot in time. Therefore, the models may not represent conditions before or after the data were collected or created. For example, any habitat lost or gained due to increased impervious surface cover since the 2006 National Land Cover Database (NLCD) was not considered in this assessment. Similarly, a portion of the uncertainty can be attributable to the temporal mismatches between the fish collection data and landscape data. As such, improving the temporal match between those datasets for future work would be beneficial.
There were also a few additional issues that were beyond the scope of this project. Acid precipitation and local habitat variation are all important in structuring fish communities. These variables were not directly used as predictor variables, although, when possible, surrogates were used to approximate variation in the model resulting from these processes. 
Local habitat measures such as water quality (pH, alkalinity, and conductivity), physical habitat complexity, and substrate size are examples of local measures important to structuring fish communities. These measures could not be directly quantified in this analysis given the scope and scale of the project. However, since each catchment’s land cover and geology was included in the analysis, some aspects of water quality were indirectly modeled. Likewise, habitat complexity and substrate size could be partially captured by the combination of stream slope and bedrock and surficial geology. Nonetheless, exclusion of detailed local measures likely accounts for some uncertainty in the model results. Thus, the results from this analysis should be combined with local expert knowledge and additional field data to arrive at the most accurate representation of habitat conditions.
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	Field Name	Comment by Than Hitt: Organize these by category…natural/anthropogenic etc?
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	Description
	Source

	Comid
	catchment comid (unique identifier)
	NHDPlus

	HUC8
	8 digit Hydrologic Unit Code
	Midwest Fish Habitat Assessment Project

	HUC12
	12 digit Hydrologic Unit Code (NRCS WBD)
	Midwest Fish Habitat Assessment Project

	HUC12_Name
	12 digit Hydrologic Unit Code Name (NRCS WBD)
	Midwest Fish Habitat Assessment Project

	Grid_code
	 
	NHDPlus

	Grid_count
	Number of cells in catchment grid, 30m
	NHDPlus

	Prod_unit
	NHDPlus production unit (subdivides the region)
	NHDPlus

	Areasqkm
	area of catchment, sq km
	NHDPlus

	WARNINGS
	my warnings on potential problems with catchment for modeling
	Jackie	Comment by Than Hitt: ?

	geol_maj
	geology, texture, majority type within catchment (coded value)
	Sally's surficial geology dataset (see notes for values)	Comment by Than Hitt: ?

	dam_inshed
	dam(s) present in catchment (yes/no)
	Sally's dam dataset

	dam_count
	number of dam(s) present in catchment
	Sally's dam dataset

	wet_sqkm
	area of mapped wetland polygons in catchment, sq km
	Sally's wetlands dataset

	dam_countC
	number of dam(s) in catchment and upstream area
	Sally's dam dataset

	wet_sqkmC
	area of mapped wetland polygons in upstream area, sq km
	Sally's wetlands dataset

	lu_devA
	calculated developed land use, area (sq km), catchment
	Great Lakes land cover (2001)

	lu_devP
	calculated developed land use, percent, catchment
	Great Lakes land cover (2001)

	lu_agA
	calculated agricultural land use, area (sq km), catchment
	Great Lakes land cover (2001)

	lu_agP
	calculated agricultural land use, percent, catchment
	Great Lakes land cover (2001)	Comment by US Fish & Wildlife Service: It appears that a number of these entries are carry-overs from a different report. Please ensure that all of these entries apply to Chesapeake Bay, and that all of the Chesapeake Bay data are listed here

	lu_forA
	calculated forested land use, area (sq km), catchment
	Great Lakes land cover (2001)

	lu_forP
	calculated forested land use, percent, catchment
	Great Lakes land cover (2001)

	lu_wetA
	calculated wetland land use, area (sq km), catchment
	Great Lakes land cover (2001)

	lu_wetP
	calculated wetland land use, percent, catchment
	Great Lakes land cover (2001)

	Soil0a
	Revised soil hydrologic group code 0 (Canada), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil0p
	Revised soil hydrologic group code 0 (Canada), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil1a
	Revised soil hydrologic group code 1 (A), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil1p
	Revised soil hydrologic group code 1 (A), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil2a
	Revised soil hydrologic group code 2 (B), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil2p
	Revised soil hydrologic group code 2 (B), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil3a
	Revised soil hydrologic group code 3 (C), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil3p
	Revised soil hydrologic group code 3 (C), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil4a
	Revised soil hydrologic group code 4 (D), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil4p
	Revised soil hydrologic group code 4 (D), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil5a
	Revised soil hydrologic group code 5 (urban areas/water), area (sq km), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil5p
	Revised soil hydrologic group code 5 (urban areas/water), area (%), catchment
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil0ac
	Revised soil hydrologic group code 0 (Canada), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil0pc
	Revised soil hydrologic group code 0 (Canada), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil1ac
	Revised soil hydrologic group code 1 (A), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil1pc
	Revised soil hydrologic group code 1 (A), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil2ac
	Revised soil hydrologic group code 2 (B), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil2pc
	Revised soil hydrologic group code 2 (B), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil3ac
	Revised soil hydrologic group code 3 (C), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil3pc
	Revised soil hydrologic group code 3 (C), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil4ac
	Revised soil hydrologic group code 4 (D), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil4pc
	Revised soil hydrologic group code 4 (D), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil5ac
	Revised soil hydrologic group code 5 (urban areas/water), area (sq km), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	Soil5pc
	Revised soil hydrologic group code 5 (urban areas/water), area (%), upstream cumulative
	Revised soil hydrologic group dataset from Sally (based on STATSGO)

	lu_devAC
	calculated developed land use, area (sq km), upstream cumulative
	Great Lakes land cover (2001)

	lu_devPC
	calculated developed land use, percent, upstream cumulative
	Great Lakes land cover (2001)

	lu_agAC
	calculated agriculture land use, area (sq km), upstream cumulative
	Great Lakes land cover (2001)

	lu_agPC
	calculated agriculture land use, percent, upstream cumulative
	Great Lakes land cover (2001)

	lu_forAC
	calculated forested land use, area (sq km), upstream cumulative
	Great Lakes land cover (2001)

	lu_forPC
	calculated forested land use, percent, upstream cumulative
	Great Lakes land cover (2001)

	lu_wetAC
	calculated wetland land use, area (sq km), upstream cumulative
	Great Lakes land cover (2001)

	lu_wetPC
	calculated wetland land use, percent, upstream cumulative
	Great Lakes land cover (2001)

	ROADCR
	LOCAL: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, with points generated, #/km2
	local_disturbance_variables.dbf

	ROADLEN
	LOCAL: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2
	local_disturbance_variables.dbf

	MINES
	LOCAL: USGS Active Mines and Mineral Processing Plants, 2003, #/km2
	local_disturbance_variables.dbf

	ROADCRC
	NETWORK: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, with points generated, #/km2
	network_disturbance_variables.dbf

	ROADLENC
	NETWORK: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2
	network_disturbance_variables.dbf

	MINESC
	NETWORK: USGS Active Mines and Mineral Processing Plants, 2003, #/km2
	network_disturbance_variables.dbf

	IMPERVS
	LOCAL: Impervious surface area (allocation per segment): area (km2)
	2001 Impervious Surface Area

	IMPERVSC
	NETWORK: Impervious surface area (accumulation of upstream segments): total upstream area (km2)
	2001 Impervious Surface Area

	CATCHTYPE
	Catchment flowline feature type (flowline and waterbody/area combined)
	based on NHD

	GAP_TEMP
	GAP regional temperature regime
	Regional Aquatic GAP

	Areasqkmc
	Total area upstream (cumulative) sq km
	Calculated (GLFHP project)

	Eco_code3
	Ecoregion code (majority), Level III, catchment
	US EPA Omernik Ecoregions for North America, Level III

	Water_gw
	LOCAL: USGS National Atlas of the US: Ground Water Use by COUNTY 2000: Millions gallons per day/km2
	local_disturbance_variables.dbf

	Water_sw
	LOCAL: USGS National Atlas of the US: Surface Water Use by COUNTY 2000: Millions gallons per day/km2
	local_disturbance_variables.dbf

	Cattle
	LOCAL: Agricultural Census 2002, 1:2M scale, INTEGER: average number of cattle/acre farmland
	local_disturbance_variables.dbf

	Water_gwc
	NETWORK: USGS National Atlas of the US: Ground Water Use by COUNTY 2000: Millions gallons per day/km2
	network_disturbance_variables.dbf

	Water_swc
	NETWORK: USGS National Atlas of the US: Surface Water Use by COUNTY 2000: Millions gallons per day/km2
	network_disturbance_variables.dbf

	Cattlec
	NETWORK: Agricultural Census 2002, 1:2M scale, INTEGER: average number of cattle/acre farmland
	network_disturbance_variables.dbf

	Minelevraw
	Minimum elevation (unsmoothed) in meters
	catchmentattributesflow.dbf

	Slope
	Slope of flowline (cm/cm)
	catchmentattributesflow.dbf

	Precip
	Mean annual precipitation in mm
	catchmentattributestempprecip.dbf

	Temp
	Mean annual temperature in degrees centigrade * 10
	catchmentattributestempprecip.dbf

	Stream_temp
	Modeled stream temperture, degrees C
	GLB FHP

	hJXnow
	Modeled stream temperature, degrees C
	USGS/GLBFHP

	Merge_temp
	Modeled stream temperature, degrees C (newer hJXnow values where available, otherwise, Stream_temp values were used)
	USGS/GLBFHP

	NLCD06DevA
	NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (sq km), catchment
	NLCD 2006

	NLCD06DevP
	NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (%), catchment
	NLCD 2006

	NLCD06ForA
	NLCD 2006 Forested land cover classes (41, 42, 43), area (sq km), catchment
	NLCD 2006

	NLCD06ForP
	NLCD 2006 Forested land cover classes (41, 42, 43), area (%), catchment
	NLCD 2006

	NLCD06AgA
	NLCD 2006 Agriculture land cover classes (81, 82), area (sq km), catchment
	NLCD 2006

	NLCD06AgP
	NLCD 2006 Agriculture land cover classes (81, 82), area (%), catchment
	NLCD 2006

	NLCD06WetA
	NLCD 2006 Wetland land cover classes (90, 95), area (sq km), catchment
	NLCD 2006

	NLCD06WetP
	NLCD 2006 Wetland land cover classes (90, 95), area (%), catchment
	NLCD 2006

	NLCD06DevAC
	NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (sq km), upstream cumulative
	NLCD 2006

	NLCD06DevPC
	NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (%), upstream cumulative
	NLCD 2006

	NLCD06ForAC
	NLCD 2006 Forested land cover classes (41, 42, 43), area (sq km), upstream cumulative
	NLCD 2006

	NLCD06ForPC
	NLCD 2006 Forested land cover classes (41, 42, 43), area (%), upstream cumulative
	NLCD 2006

	NLCD06AgAC
	NLCD 2006 Agriculture land cover classes (81, 82), area (sq km), upstream cumulative
	NLCD 2006

	NLCD06AgPC
	NLCD 2006 Agriculture land cover classes (81, 82), area (%), upstream cumulative
	NLCD 2006

	NLCD06WetAC
	NLCD 2006 Wetland land cover classes (90, 95), area (sq km), upstream cumulative
	NLCD 2006

	NLCD06WetPC
	NLCD 2006 Wetland land cover classes (90, 95), area (%), upstream cumulative
	NLCD 2006
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