LANDFIRE Vegetation Mapping and Updating

- Donald Long
- USDA Forest Service, Rocky Mountain Research Station
- June 13th, 2014
- Comparing Existing Ecological Systems Maps for the Eastern USA
- Hadley, MA

Mapping Characteristics

- Map All Lands & Vegetative Communities
 - Same level of detail
 - (Federal & Non-Federal lands)
 - Forestlands, Shrublands, and Grasslands
- Repeatable
 - Quick and affordable
- Target Map Accuracies:
 - 60 to 80 percent map accuracy
 - 30m resolution
- Consistent for the Nation
 - Map units mean the same thing in Florida as they do in Colorado

Map Unit Requirements

- ✓ Identifiable
 - from field or plot data
- ✓ Map-able
 - 30 meter resolution
 - 60-80% accurate
- √ Model-able
 - provide required model inputs
- √ Scalable
 - link with existing classifications

LANDFIRE

LANDFIRE at 10 Years

Listening, Evolving, Improving, Serving

LANDFIRE National V1.0.0

- CONUS
- Alaska
- Hawaii
- Free, available online for download
- 20+ 30 meter spatial data layers
- Regional or national level application scale
- Transparent
- Repeatable
- Scientifically based

LANDFIRE 2001 V1.0.5

- CONUS
- Alaska
- Hawaii
- Filled gaps along international borders
- Modified
 Western BpS
 layers using new
 SSURGO data
- Modified the extent of wetlands and riparian areas, barren and water classes

LANDFIRE 2008 V1.1.0

- CONUS
- Alaska
- Hawaii
- Updates to V1.0.5 for landscape change from 2001 - 2008
- Incorporated known treatments and disturbances along with remote sensing
- Added burnable AG and Urban classes

LANDFIRE 2010 V 1.2.0

- CONUS
- Alaska
- Hawaii
- Insular Areas
- Updates to V1.0.5 for landscape change from 2001 2010
- Refined AG classes using NASS crop data and burnability
- Refined wetlands using NWI

LANDFIRE 2012 V1.3.0

- CONUS
- Alaska
- Hawaii
- Updates to V1.0.5 for landscape change from 2001 2012
- Incremental delivery beginning in the Central States Summer 2014
- Continued incorporation of new and better supporting data sets

LANDFIRE DELIVERABLES

Vegetation Characteristics

Existing vegetation Existing vegetation structure Bio-physical Settings

Fire behavior

Fire behavior fuel models

Canopy bulk density

Canopy base height

Canopy cover

Canopy height

FCC Fuelbeds

Fuel Loading Models

Fire ecology

Historical fire return interval

Historical fire severity

Historical fire regime

Current Succession Class

Vegetation departure

Fire Regime Condition Classes

Mapping Methods

- Use Sequence Table to assign reference data
- Extract data for each predictor variable for each reference plot
- Randomly select ~ 2% of plots from each dataset for independent accuracy assessment later across "super-zones"
- Winnow predictor variables
- Model stratifications, then each map unit
- Use 10-fold cross-validation for zone accuracy
- Apply rules in the GIS to the produce

MRLC 2000 Map Zones

Landsat Data Acquisition and Processing

- At least three dates per pixel
- Strict processing standards for radiometric and illumination calibrations
- From radiance to TOA reflectance

Breaking Landscape Down to 9 Elements

Co	over Types	Canopy Co	ver	Height	
	Forest	Forest		Forest	
	Shrub	Shrub		Shrub	
	Herbaceous	Herbaceous		Herbaceous	

THE PROCESS

Sequence Tables

✓ Automation

- ESP_EVT_Key_Classifier
 - Python
 - Works w/ Access MDB
 - Dominance / Codominance for EVT
 - Indicators for ESP

SEQUENCE TABLES

Sequence Table INPUTS

EVT Table
ESP Table
Plots
Species List
Species
Descriptive

Sequence Table EVT OUTPUTS

EVT_Commission

EVT_Constancy

EVT MAT

EVT NS

EVT Ommission

EVT_Summary

Sequence Table ESP OUTPUTS

ESP_Commission

ESP_Constancy

ESP_MAT

ESP NS

ESP_Ommission

ESP_Summary

Sequence Table BPS EVT OUTPUTS

ESP_EVT_Constancy

ESP EVT Crosscheck Plots

ESP EVT Crosstab

ESP_EVT_Plots Descriptive

ESP_EVT_Dom_CoDom Spp

Existing Vegetation

- Used directly for predicting current vegetation composition
- Augmented with canopy and height information
- Framework for mapping current fuel distribution and loadings
- Framework for mapping succession classes for use in departure mapping

Existing Vegetation Type the current distribution of an Ecological system

- 1. Characteristic vegetative physiognomy and composition
- 2. Physiognomic modifiers using canopy density and/or height
- 3. Geographic modifiers using Ecological Divisions or nested Provinces that describe the distribution of the type.
- 4. Environmental modifiers using moisture and temperature gradients ie "dry-mesic" or "subalpine"

EVT Rule-sets

√ Criteria

- Absolute cover for lifeforms
 - Tree / Tree-Savanna
 - Shrub / Shrub Steppe
 - Herbaceous / Grassland
- Relative cover of floristic criteria generally indicating dominance
- Environmental modifiers floristic
- Geographical modifiers floristic

EVT Criteria Forest Examples

Key Criteria	EVT
ABLA and/or PIEN > 50% RC and ABCO, PSME, PIPU, mesic shrubs present	Rocky Mountain Subalpine Mesic Spruce-Fir Forest and Woodland
ABLA and/or PIEN > 50% RC and Mesic indicators NOT present	Rocky Mountain Subalpine Dry- Mesic Spruce-Fir Forest and Woodland
ABCO and/or PSME and/or PIPU > 50% RC and PIEN, POTR, ACGL, ACGR, etc. present	Rocky Mountain Montane Mesic Mixed Conifer Forest and Woodland
ABCO and/or PSME and/or PIPU > 50% RC and Mesic indicators NOT present	Rocky Mountain Montane Dry-Mesic Mixed Conifer Forest and Woodland

Environmental Site Potential the potential distribution of an Ecological system

- 1. Indicators of the characteristic vegetative physiognomy and composition
- 2. Indicators of the physiognomic modifiers using canopy density and/or height
- 3. Geographic modifiers using Ecological Divisions or nested Provinces that describe the distribution of the type.
- 4. Environmental modifiers using moisture and temperature gradients ie "dry-mesic" or "subalpine"

Environmental Site Potential (ESP)

- Foundation for predicting current vegetation composition; used in EVT probabilities
- Framework for mapping current fuel distribution and loadings
- Succession without disturbance

Biophysical Settings (BpS)

- Foundation for historical fire regimes modeling
- Framework for mapping departure from historical condition
- Succession with disturbance

ESP Rule-sets

√ Criteria

- Absolute cover for lifeforms
 - Tree / Tree-Savanna
 - Shrub / Shrub Steppe
 - Herbaceous / Grassland
- Relative cover of floristic criteria generally indicating "presence"
- Environmental modifiers floristic
- Geographical modifiers floristic

ESP Criteria Forest Examples

Key Criteria	ESP
ABLA and/or PIEN and/or ABLA > 10% RC and ABCO, PSME, PIPU, mesic shrubs present	Rocky Mountain Subalpine Mesic Spruce-Fir Forest and Woodland
ABLA and/or PIEN and/or ABLA > 10% RC and Mesic indicators NOT present	Rocky Mountain Subalpine Dry- Mesic Spruce-Fir Forest and Woodland
ABCO and/or PSME and or PIPU > 10% RC and PIEN, POTR, ACGL, ACGR, etc. present	Rocky Mountain Montane Mesic Mixed Conifer Forest and Woodland
ABCO and/or PSME and or PIPU > 10% RC and Mesic indicators NOT present	Rocky Mountain Montane Dry-Mesic Mixed Conifer Forest and Woodland

Auto Key Regions

LANDFIRE Mapping Process

LANDFIRE Existing Vegetation

EVT EVH EVC

Generating Lifeform Mask

Use only DEM & derivative and imagery as predictors

Exclude tree plots with < 20% canopy cover

Pseudoplots?

Master_ID	asp	dem	posidx	slpp	offb9	offdate	offb1	offb2	offb3	offb4	offb5	offb6	offtc1	offtc2	offtc3	onb9	LF_Code
6000571	344	2562	38	54	129	4	34	27	24	38	40	24	35	87	116	175	1
6000572	142	2537	34	35	167	4	40	40	46	96	92	52	83	102	81	184	1
6000583	143	2521	15	58	174	4	67	73	87	119	151	122	137	59	30	200	2
6000584	156	2498	6	17	171	4	58	59	66	108	136	98	115	76	43	196	1
6000586	284	2580	39	20	146	4	29	21	20	53	38	24	38	103	116	171	1
6000591	329	2538	42	28	138	4	26	20	13	47	12	5	26	109	138	164	1
6000592	248	2515	34	16	150	4	36	30	32	65	54	37	54	97	105	183	1
6000593	91	2984	47	9	169	4	43	45	63	106	140	81	105	90	42	182	3
6000596	64	2340	44	21	150	4	29	20	16	52	27	16	33	107	126	185	1

See5

Iterative process

Apply tree to spatial data to create mask

10 % NLCD mask

Generating Lifezone Mask

Use only DEM & derivative and imagery as predictors Pseudoplots?

Master ID	asp	dem	posidx	slpp	offb9	offdate	offb1	offb2	offb3	offb4	offb5	offb6	offtc1	offtc2	offtc3	onb9		LZ Code
6000315	254	2969	64	7	161	4	43	43	49	79	87	63	78	84	80	199	***	1
6000321	223	3076	33	11	169	4	48	50	60	94	137	93	102	77	40	194		1
6000329	-1	2602	0	0	176	4	42	41	52	88	140	87	93	83	37	187	2.2	1
6000331	187	2484	66	71	169	4	39	37	38	85	79	53	73	100	86	203		2
6000346	33	2389	55	44	152	4	30	19	16	43	24	14	28	102	128	202		2
6000355	258	1447	43	29	161	4	31	25	16	80	37	13	49	125	124	175		2
6000372	146	1322	29	17	188	4	44	37	41	84	87	59	77	94	80	208		3
6000385	175	2825	52	31	175	4	44	43	49	84	114	77	86	83	58	198	***	1
6000386	136	2582	56	23	169	4	42	41	48	94	105	69	88	94	66	206		3
6000387	134	2135	85	9	171	4	49	48	54	71	92	68	80	71	76	223		2

See5

Iterative process

Apply tree to spatial data to create mask

Generating LF-LZ Mask

Lifeform Mask

Lifezone Mask

Combined Lifeform/ Lifezone Mask

Current Methodology: EVT

Partial table of modeling groups in Zone 6 (Sierra Nevada)

Modeling Group	EVTCode	LF_EVT	
11	2033	Mediterranean California Subalpine Woodland	Chatial
11	2044	Northern California Mesic Subalpine Woodland	See5 Spatial
11	2058	Sierra Nevada Subalpine Lodgepole Pine Forest and Woodland	Output
11	2229	Pinus albicaulis Woodland Alliance	Output
12	2011	Rocky Mountain Aspen Forest and Woodland	
12	2021	Klamath-Siskiyou Lower Montane Serpentine Mixed Conifer Woodland	
12	2022	Klamath-Siskiyou Upper Montane Serpentine Mixed Conifer Woodland	
12	2027	Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland	
12	2028	Mediterranean California Mesic Mixed Conifer Forest and Woodland	
12	2029	Mediterranean California Mixed Oak Woodland	
12	2030	Mediterranean California Lower Montane Black Oak-Conifer Forest and Woodland	snatial
12	2031	California Montane Jeffrey Pine Woodland	See5* Spatial Output
12	2032	Mediterranean California Red Fir Forest and Woodland	Output
12	2043	Mediterranean California Mixed Evergreen Forest	Jacpac
12	2061	Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland	
12	2062	Inter-Mountain Basins Mountain Mahogany Woodland and Shrubland	
12	2114	California Lower Montane Blue Oak-Foothill Pine Woodland and Savanna	
12	2230	Pinus sabiniana Woodland Alliance	
12	2231	Sequoiadendron giganteum Forest Alliance	
13	2017	Columbia Plateau Western Juniper Woodland and Savanna	See5* Spatial Output
13	2019	Great Basin Pinyon-Juniper Woodland	See5 Spatial
13	2034	Mediterranean California Mesic Serpentine Woodland and Chaparral	Output
21	2067	Mediterranean California Alpine Fell-Field	O Site Site
21	2071	Sierra Nevada Alpine Dwarf-Shrubland	
22	2098	California Montane Woodland and Chaparral	
22	2126	Inter-Mountain Basins Montane Sagebrush Steppe	
22	2220	Artemisia tridentata ssp. vaseyana Shrubland Alliance	

See5 predictor variables include imagery, DEM & derivative, gradient, and probability data

Current Methodology: EVT

Existing Vegetation Cover

Percent Cover

- Background
- Cultivated Crops
- Developed, Low Intensity
- Developed, Medium Intensity
 - Developed, Open Space
- Herb. Canopy [>= 10 and < 20%]
- Herb. Canopy [>= 20 and < 30%]
- Herb. Canopy [>= 30 and < 40%]
- Herb. Canopy (>= 40 and < 50%)
- Herb. Canopy [>= 50 and < 60%]
 - No Canopy Estimated
- Open Water
- Pasture/Hay
- Shrub Canopy [>= 10 and < 20%]
- Shrub Canopy [>= 20 and < 30%]
- Shrub Canopy [>= 30 and < 40%]
- Shrub Canopy [>= 40 and < 50%]
- Shrub Canopy [>= 50 and < 60%]
- Shrub Canopy [>= 60 and < 70%]</p>
- Shrub Canopy [>= 70 and < 80%]
- Shrub Canopy [>= 80 and < 90%]
- cinan campp) [co ama co of
- Shrub Canopy [>= 90 and <= 100%]
- Tree Canopy [>= 10 and < 20%]
- Tree Canopy [>= 20 and < 30%]
- Tree Canopy (>= 30 and < 40%)</p>
- Tree Canopy (>= 40 and < 50%)
- Tree Canopy [>= 50 and < 60%]
- Tree Canopy [>= 60 and < 70%]
- Tree Canopy [>= 70 and < 80%]
- Tree Canopy [>= 80 and < 90%]
- Tree Canopy (>= 90 and <= 100%)

Existing Vegetation Height

Herbaceous	Shrubs	Trees
0-0.5 meters	0-0.5 meters	0-5 meters —
0.5-1.0 meters	0.5-1.0 meters	5-10 meters
> 1 meter	1.0-3.0 meters	10-25 meters
	> 3.0 meters	25-50 meters
		> 50 meters

Mapzone 61

LANDFIRE Rectification Process

- Overlay ESP/EVT export into Access
- Eliminate small combos with < 500 pixels</p>
 - On the map and in the database
- Attribute ESP and EVT
- Overlay ESP/EVT w/ EVC/EVH export into Access
- Review and re-assign combinations
- Export back into GIS and "remap

LANDFIRE LANDFIRE 1.0.5 / 1.1.0 Circa 2001 Circa 2001 Circa 2001 **Vegetation Improvements #2** Circa 2001 Canopy Canopy Canopy Height Base Height Bulk Density **Fuel Mapping Biophysical** LF National **NRCS** Settings Fuelbed Rulesets **SURRGO** EVT Circa 2001 LANDFIRE Non-forest Circa 2001 FBFM 40 BuAg **Fuels Mapping** Re-mapping FBFM 13 BuUr Tool Circa 2001 Circa 2001 Rock Biophysical **Fuelbeds FCCS** Circa 2001 WX-BGC Water Refresh FLM gradients EVT LANDFIRE **ECOMAP** Circa 2001 FRCC Mapping Subsections Circa 2001. **SClass** Tool WX-BGC DAYMET Fire Regime Circa 2001 Mapping Circa 2001 RCC Departure Circa 2001 Circa 2001 Reference **EVT** SClass Mapping Conditions **LANDFIRE Refresh** Circa 2001 FVC **Final Deliverables Vegetation Improvements #3** Integrated EVH Circa 2001 Fire Refresh Percent Vegetation EVC Regime EVC Non-lethal **Spatial Data Hub MRLC** Circa 2001 Groups Database Landsat TM **EVH** Percent Refresh Refresh BpS Mixed **BpS Map** EVH Map FDNA Percent Mean stand Circa 2008 Fire Return replacement Vegetation Interval **Transition Modeling** Circa 2008 Vegetation EVC Circa 2008 Transition Additional Reference Database Circa 2008 Fire Regime Circa 2008 Data **Database** EVH RMT DB acquisition EVT Mapping LANDFIRE Update **ECOMAP** RVDDTDB FRCC Mapping Circa 2008 Subsections FVS/FFE Tool Circa 2008 EVC **SClass** Data Circa 2008 Stem Mapping EVH conversion Circa 2008 Circa 2008 Circa 2001 Reference FRCC FRCC Departure **SClass Mapping** Conditions Disturbance Map attribute Sequence Circa 2008 Circa 2008 Mapping Circa 2008 Disturbance **Tables** Canopy Canopy Canopy Height Grid Fuelbed Rulesets Base Height Bulk Density LANDFIRE **Fuels Mapping** Circa 2008 Circa 2008 Contributed Data Tool FBFM 40 FBFM 13 Circa 2001 Fuelbeds Circa 2001 Circa 2001 Circa 2008 **MTBS EVENTS RSLC FCCS** FLM Disturbance GDB **Fuel Mapping**

LANDFIRE 1.0.5 / 1.1.0

LF 2001 Improvements

LANDFIRE National Existing Vegetation Height (EVH)

- Height is mapped by lifeform with decision tree models
- Modeling data include:
 - Contributed plot data
 - Landsat imagery
 - DEM & derivatives
 - Ancillary data

CONUS & Hawaii EVH Legend

Herbaceous	Shrub	Tree
0 - 0.5 m	0 - 0.5 m	0 - 5 m
0.5 - 1.0 m	0.5 - 1.0 m	5-10 m
> 1 m	1.0 - 3.0 m	10 - 25 m
	> 3.0 m	25 - 50 m
		> 50 m

LANDFIRE National Existing Vegetation Cover (EVC)

- LANDFIRE National 2001 forest canopy cover values obtained from NLCD
- Shrub and herb cover estimated from field data representing average values at 30 m
- Regression tree modeling
- Binned into 10% class

End user observations

- Forest height values tended to be too low
- Forest canopy cover values tended to be too high
- Significant impact on fire behavior modeling systems

Remap of forest height and canopy cover for the conterminous US

LANDFIRE Refresh

- Regression tree models using FIA-derived values of forest height and canopy cover, Landsat imagery, and terrain data
- Incorporated SRTM BAW height metric (Kellndorfer *et al.* 2004 RSE)

FIA data for canopy cover

- Stem map-derived values of canopy cover (Toney et al. 2009)
 - IW-FIA used line intercept method to measure canopy cover for trees 1" diameter
 - Apply regression equations to predict crown width from stem diameter (5" diameter)
 - Geometric model to estimate canopy cover from predicted tree crowns

Impacts: EVH

Impacts: EVC

Updating to 2008

- Annual disturbance layers: Landsat-derived and contributed
- Existing structure updated based on predetermined vegetation transitions
 - For forests, used FVS and FIA data to model 10 years of growth for vegetation/disturbance combinations
- FVS also implemented without incorporating disturbances to determine vegetation transitions in undisturbed areas

Updating to 2008: Data Process

- Integrated Disturbance (VDIST)
 - Type
 - Time Since Disturbance
- Vegetation Transition Databases (VTDB)
 - Forest
 - Non-forest
- Veg Transition (VEGTRA)
 - Combine LF 2001 EVT/EVH/EVC w/ VDIST
 - Create LF2008 EVT/EVC/EVH products

LF 2008 DISTURBANCE INTEGRATION

Event Code	Event Description
1	Development
2	Clearcut
3	Harvest
4	Thinning
5	Mastication
6	Other Mechanical
7	Wildfire
8	Wildland Fire Use
9	Prescribed Fire
10	Wildland Fire
11	Weather
12	Insecticide
13	Chemical
14	Insects
15	Disease
16	Insects/Disease
17	Herbicide
18	Biological

Disturbance Type

- Fire
- Mechanical Remove
- Mechanical Add
- Windthrow
- Insects and Disease
- Chemicals
- Herbicide

LF 2008 DISTURBANCE INTEGRATION

Non-forest VTDB

- Non forest EVT succession to forest EVT, EVH, EVC
- High severity fire, mechanical remove to non-forest EVT, EVH, EVC
- Non-forest EVT fire (shrub to grass, grass to grass)
- Non-forest EVT mechanical add & remove
- Non-forest EVT chemical/herbicide
- VDDT SClass A EVC/EVH
- Mapzone summaries drive rules

Forest VTDB

- Run all plots through FVS-FFE
- Acquire new cover and height
- Bin into EVC and EVH classes
- Group output at 2 levels of EVT
- Find majority outcome
- Make forest tables

FVS/FFE SIMULATION PARAMETERS

Mechanical Remove

- High: Clearcut and burn
- Moderate: Remove 35% stand density; pile and burn
- Thin from below in 0-6"; pile and burn

Mechanical Add

- Cut 90%, 75%, and 55% of 0-8" then masticate
- Fire
 - Target 95%, 75%, and 45% mortality
- Insects and Disease
 - 85%, 55%, and 10% fixed mortality
- Windthrow
 - Thin 85%, 55%, and 10% of stand and leave on the ground

- VEGTRA process
 - Overlay VDIST w/2001 Veg
 - Import overlay data
 - Import non-forest tables
 - Import forest tables
 - Format & test update queries
 - Run update queries
 - Export vegtrans dbf
 - Create EVEG08 grids

LF 1.2.0

LF 1.2.0 Improvements

Events data – Fire (red), Harvest (yellow) and Insect (brown)

LANDFIRE REMAP Historical and Future Context

