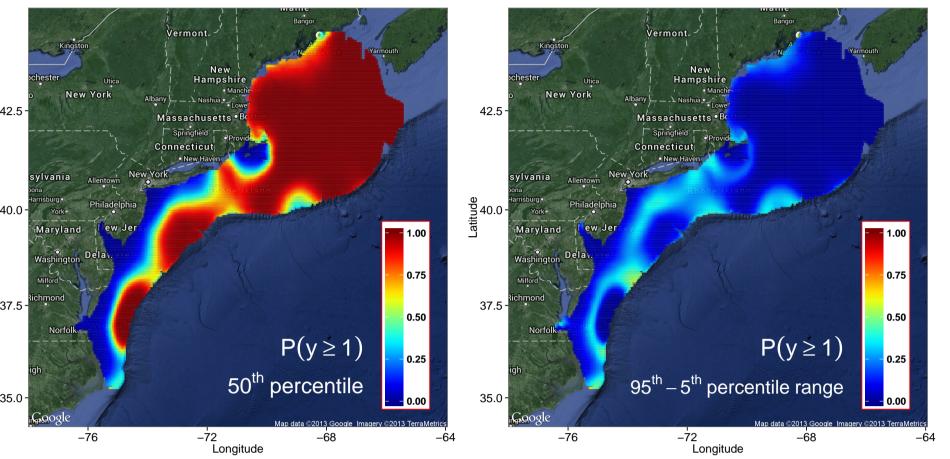
Mapping the distribution of marine birds using a space-time double-hurdle model

Earvin Balderama (LUC), Beth Gardner (NCSU), Brian Reich (NCSU) Department of Mathematics & Statistics, Loyola University Chicago, Chicago, IL, USA

Motivation

Construction of offshore wind energy facilities in U.S. Atlantic coast regions may impact marine life.

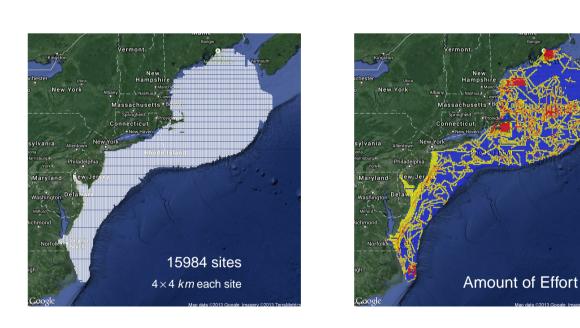

Goal: Develop spatial-temporal models to assess avian distribution and abundance, and create maps to identify sensitive and high-use areas in need of protection.

Predicted Annual Exposure Maps

- ► Maps of exposure probability during a calendar year.
- ► Maps of uncertainty based on a 90% credible interval.

Great Shearwater

Occupancy probability \longleftrightarrow *Map of uncertainty*


Analyses

- Parameter estimation in a Bayesian MCMC framework.
- ► Threshold values considered:
- $\triangleright \psi = 1 \quad \iff \text{single GPD-hurdle}$
- $\triangleright \psi = \{97.5th \text{ percentile}\}$
- $\triangleright \psi = \{99th \text{ percentile}\}$
- $\triangleright \psi = \infty \quad \iff \text{single NB-hurdle}$
- Considered models with & w/out spatial effect S.
- ► Model comparison: DIC and LPML for goodness-of-fit.

Data Summary and Resulting Best Model

Species	#Obs .	Mean (SD)	Med	Max	Best Model (ψ)
Atlantic Puffin	248	2.0 (1.5)	1	10	Double-hurdle (5)
Black-capped Petrel	540	23.1 (56.0)	6	605	Double-hurdle (5)
Black Tern	738	4.9 (9.3)	2	105	Double-hurdle (5)
Bonaparte's gull	376	5.8 (18.3)	2	262	Double-hurdle (5)
Common Eider	1432	572.1 (3019.8)	15	50025	GPD-hurdle (1)
Common Loon	1319	3.3 (3.9)	2	40	Double-hurdle (7)
Common Tern	809	11.8 (51.7)	3	1094	Double-hurdle (5)
Cory's Shearwater	634	4.9 (16.9)	2	266	Double-hurdle (5)
Double-crested Cormorant	232	13.9 (43.9)	2	501	Double-hurdle (5)
Dovekie	550	7.6 (17.6)	3	299	Double-hurdle (7)
Great Black-backed Gull	3188	4.8 (25.8)	2	1300	Double-hurdle (7)
Great Shearwater	3195	12.2 (35.8)	4	950	Double-hurdle (23)
Herring Gull	3249	5.7 (31.0)	2	1300	Double-hurdle (8)
Laughing Gull	464	3.2 (6.3)	2	88	Double-hurdle (5)
Leach's Storm-petrel	840	6.2 (21.3)	2	345	Double-hurdle (5)
Long-tailed Duck	1443	94.0 (432.6)	17	11000	GPD-hurdle (1)
Northern Fulmar	1330	7.8 (43.2)	2	1352	Double-hurdle (5)
Northern Gannet	2248	6.1 (41.7)	2	1775	Double-hurdle (6)
Razorbill	1002	10.7 (19.7)	4	293	Double-hurdle (7)
Roseate Tern	196	7.1 (16.8)	2	137	GPD-hurdle (1)
Sooty Shearwater	729	9.4 (38.8)	2	700	Double-hurdle (6)
Surf Scoter	1135	60.2 (146.3)	15	1400	Double-hurdle (30)
White-winged Scoter	885	24.5 (73.1)	4	1027	Double-hurdle (7)
Wilson's Storm-petrel	1790	13.4 (92.2)	2	3061	Double-hurdle (6)

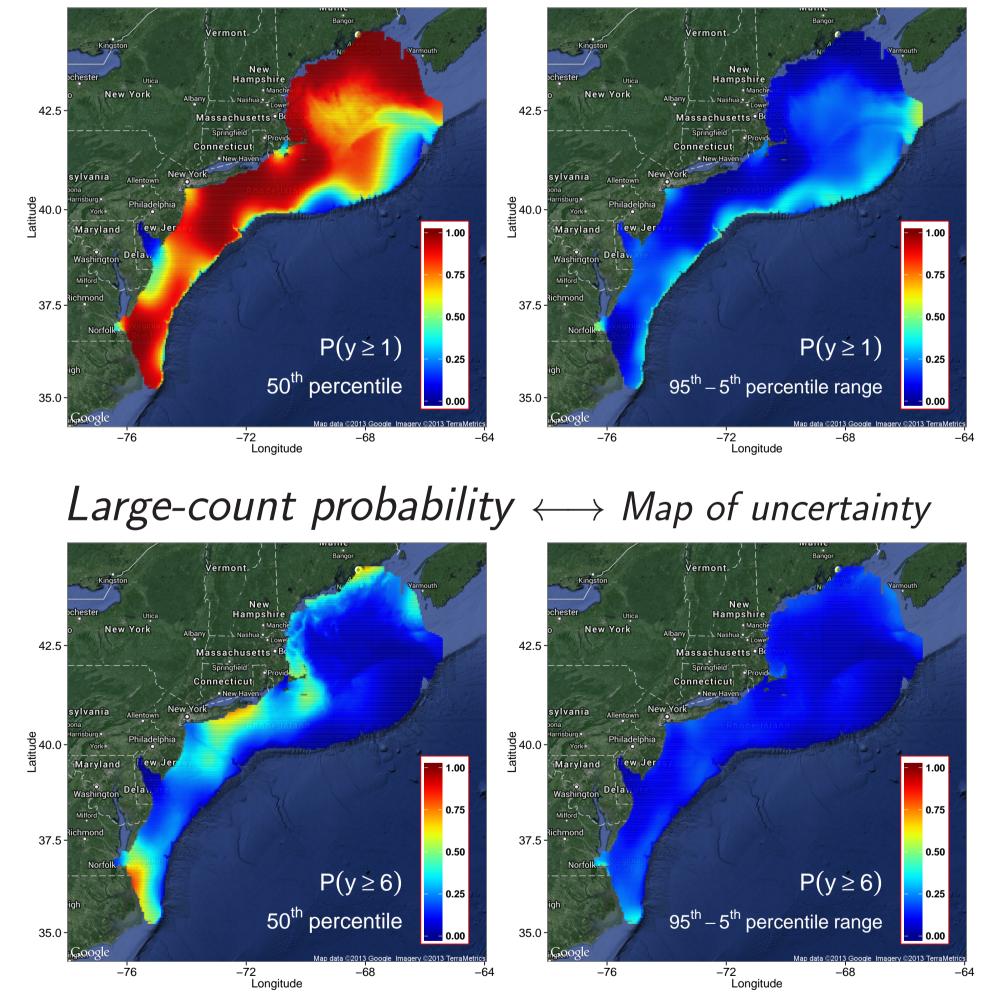
- Surveys: Boat/aerial continuous-time strip transects.
- ► Space: 15,984 4km×4km pixels.
- ► Time: July 2002—November 2010.
- \blacktriangleright $E_{ii} = \text{Effort} (\# \text{ surveys intersecting pixel } i, \text{ month } j)$ \blacktriangleright $y_{ij} = \text{Count} (\# \text{ individual birds in pixel } i, \text{ month } j)$

1	Example:					
Varmouth	Northern Gannet data					
	Count	Frequency				
	0	9553				
·	1 - 10	1778				
10+	11 - 100	184				
5-9 1-4	101 - 1000	11				
ery 52013 TerraMetrics	1001+	1				

Model

Data

Double-Hurdle model accounts for both excessive zero-inflation and extreme over-dispersion. **Likelihood of observing** y_{ii} birds in pixel *i* during the *j*th month of the year:


 $f(y_{ij}|oldsymbol{ heta}) = egin{cases} oldsymbol{p}_{ij}, & y_{ij} = oldsymbol{0}, \ [1-p_{ij}] \cdot [1-q_{ij}] \cdot \mathsf{NB}(\mu_{ij},r), & 1 \leq y_{ij} < oldsymbol{\psi}, \ [1-p_{ij}] \cdot oldsymbol{q}_{ij} \cdot \mathsf{GPD}(\psi,\sigma,\xi), & y_{ij} \geq oldsymbol{\psi}. \end{cases}$

Large-count probability \longleftrightarrow Map of uncertainty

Northern Gannet

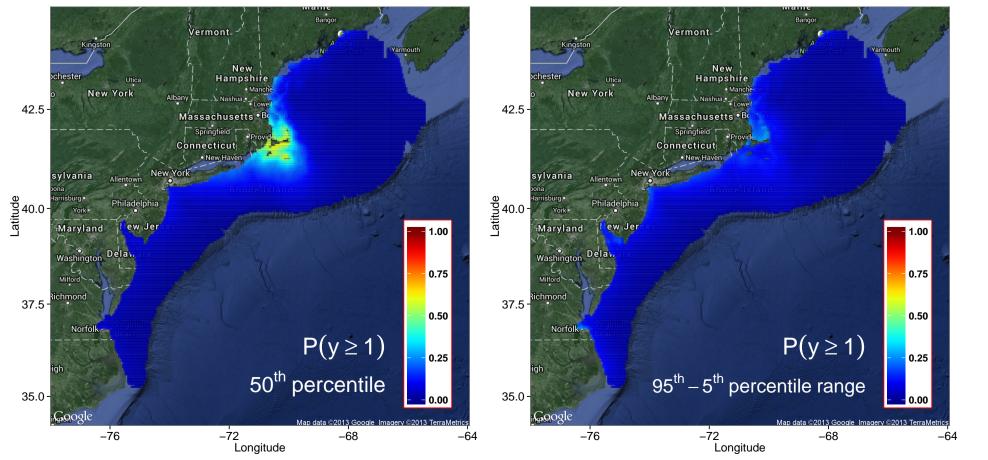
Occupancy probability $\leftrightarrow Map$ of uncertainty

Conclusions

- Spatial models (with S) fits better than non-spatial.
- \blacktriangleright ψ at 97.5*th* percentile fits better than 99*th* percentile.
- For most species, the double-hurdle model fits better than any single-hurdle model.

► Negative binomial (NB) for small, "typical" counts. \triangleright left-truncated at 0 and right-truncated at a fixed ψ . Generalized Pareto (GPD) for large, right-tail counts. \triangleright GPD density is > 0 at threshold ψ or above.

Spatial Hierarchical Regression


Can create (monthly/yearly) maps using estimates of: $\mathbf{p} = P(zero-count)$ $\mathsf{logit}(\mathsf{p}) = \mathsf{X} \gamma + \mathsf{S}$ μ = mean of typical-count distribution. $\log(\boldsymbol{\mu}) = \log(E) + \mathbf{X}\beta + \mathbf{S}$ $\mathbf{q} = P(large-count \mid nonzero-count)$ $logit(\mathbf{q}) = \mathbf{X} \boldsymbol{\delta}$

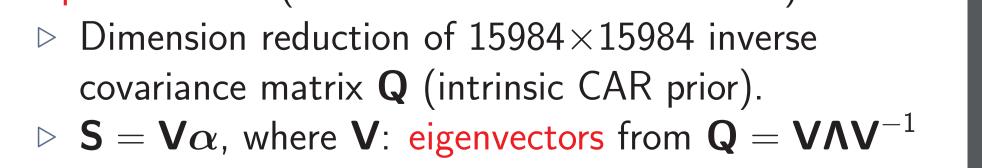
Environmental covariates

- \triangleright **x**₁ = Sea surface temperature.
- \triangleright **x**₂ = Ocean depth.
- \triangleright **x**₃ = Chlorophyll-a level.
- \triangleright **x**₄ = Distance-to-shore.
- Temporal effects (Fourier basis)
 - $\triangleright \mathbf{x}_5 = sin(\frac{\pi}{6} \cdot Month).$
 - $\triangleright \mathbf{x}_6 = cos(\frac{\pi}{6} \cdot Month).$
- Spatial effects (Guassian Markov random field)

Roseate Tern

Occupancy probability $\leftrightarrow Map$ of uncertainty

- ▷ If the double-hurdle model is not the best-fit, then the GPD-hurdle is the best-fit.
- If considering only single-hurdle models, then GPD-hurdle fits better than NB-hurdle for most species.


Current Work & Future Considerations

- Investigate other distributions, i.e., log-normal models.
- Expand study area and incorporate new data.
- \blacktriangleright Treat threshold parameter ψ as unknown.
- ► Maps of "persistence", "vulnerability", ...
- Incorporate climate models.
- Point-process models.
- ▶ Shiny app.

Acknowledgements

- Software used: (www.r-project.org)
- ► Maps made with: ggmap package in ⁽R).
- Data acquired from: Avian Compendium (NOAA)
- ► Thanks: Allison Sussman, Mark Wimer, Brian Kinlan, and the following organizations:

