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Motivation

I Construction of offshore wind energy facilities in
U.S. Atlantic coast regions may impact marine life.

I Goal: Develop spatial-temporal models to assess avian
distribution and abundance, and create maps to identify
sensitive and high-use areas in need of protection.

Data

I Surveys: Boat/aerial continuous-time strip transects.
I Space: 15,984 4km×4km pixels.
I Time: July 2002—November 2010.
I Eij = Effort (# surveys intersecting pixel i , month j)
I yij = Count (# individual birds in pixel i , month j)
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Northern Gannet data
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Model

I Double-Hurdle model accounts for both excessive
zero-inflation and extreme over-dispersion.

Likelihood of observing yij birds in pixel i during
the j th month of the year:

f (yij|θ) =


pij, yij = 0,

[1− pij] · [1− qij] · NB(µij, r), 1 ≤ yij < ψ,

[1− pij] · qij · GPD(ψ, σ, ξ), yij ≥ ψ.

I Negative binomial (NB) for small, “typical” counts.
. left-truncated at 0 and right-truncated at a fixed ψ.

I Generalized Pareto (GPD) for large, right-tail counts.
. GPD density is > 0 at threshold ψ or above.

Spatial Hierarchical Regression

I Can create (monthly/yearly) maps using estimates of:

p = P(zero-count)

logit(p) = Xγ + S

µ = mean of typical-count distribution.

log(µ) = log(E ) + Xβ + S

q = P(large-count | nonzero-count)
logit(q) = Xδ

I Environmental covariates
. x1 = Sea surface temperature.
. x2 = Ocean depth.
. x3 = Chlorophyll-a level.
. x4 = Distance-to-shore.

I Temporal effects (Fourier basis)
. x5 = sin(π6 ·Month).
. x6 = cos(π6 ·Month).

I Spatial effects (Guassian Markov random field)
. Dimension reduction of 15984×15984 inverse

covariance matrix Q (intrinsic CAR prior).
. S = Vα, where V: eigenvectors from Q = VΛV−1

Predicted Annual Exposure Maps

I Maps of exposure probability during a calendar year.
I Maps of uncertainty based on a 90% credible interval.

Great Shearwater
Occupancy probability ←→ Map of uncertainty
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Large-count probability ←→ Map of uncertainty
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Northern Gannet
Occupancy probability ←→ Map of uncertainty
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Large-count probability ←→ Map of uncertainty
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Roseate Tern
Occupancy probability ←→ Map of uncertainty
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Analyses

I Parameter estimation in a Bayesian MCMC framework.
I Threshold values considered:
. ψ = 1 ⇐= single GPD-hurdle
. ψ = {97.5th percentile}
. ψ = {99th percentile}
. ψ =∞ ⇐= single NB-hurdle

I Considered models with & w/out spatial effect S.
I Model comparison: DIC and LPML for goodness-of-fit.

Data Summary and Resulting Best Model

Species #Obs. Mean (SD) Med Max Best Model (ψ)

Atlantic Puffin 248 2.0 (1.5) 1 10 Double-hurdle (5)

Black-capped Petrel 540 23.1 (56.0) 6 605 Double-hurdle (5)

Black Tern 738 4.9 (9.3) 2 105 Double-hurdle (5)

Bonaparte’s gull 376 5.8 (18.3) 2 262 Double-hurdle (5)

Common Eider 1432 572.1 (3019.8) 15 50025 GPD-hurdle (1)
Common Loon 1319 3.3 (3.9) 2 40 Double-hurdle (7)

Common Tern 809 11.8 (51.7) 3 1094 Double-hurdle (5)

Cory’s Shearwater 634 4.9 (16.9) 2 266 Double-hurdle (5)

Double-crested Cormorant 232 13.9 (43.9) 2 501 Double-hurdle (5)

Dovekie 550 7.6 (17.6) 3 299 Double-hurdle (7)

Great Black-backed Gull 3188 4.8 (25.8) 2 1300 Double-hurdle (7)

Great Shearwater 3195 12.2 (35.8) 4 950 Double-hurdle (23)

Herring Gull 3249 5.7 (31.0) 2 1300 Double-hurdle (8)

Laughing Gull 464 3.2 (6.3) 2 88 Double-hurdle (5)

Leach’s Storm-petrel 840 6.2 (21.3) 2 345 Double-hurdle (5)

Long-tailed Duck 1443 94.0 (432.6) 17 11000 GPD-hurdle (1)
Northern Fulmar 1330 7.8 (43.2) 2 1352 Double-hurdle (5)

Northern Gannet 2248 6.1 (41.7) 2 1775 Double-hurdle (6)

Razorbill 1002 10.7 (19.7) 4 293 Double-hurdle (7)

Roseate Tern 196 7.1 (16.8) 2 137 GPD-hurdle (1)
Sooty Shearwater 729 9.4 (38.8) 2 700 Double-hurdle (6)

Surf Scoter 1135 60.2 (146.3) 15 1400 Double-hurdle (30)

White-winged Scoter 885 24.5 (73.1) 4 1027 Double-hurdle (7)

Wilson’s Storm-petrel 1790 13.4 (92.2) 2 3061 Double-hurdle (6)

Conclusions

I Spatial models (with S) fits better than non-spatial.
I ψ at 97.5th percentile fits better than 99th percentile.
I For most species, the double-hurdle model fits better

than any single-hurdle model.
. If the double-hurdle model is not the best-fit,

then the GPD-hurdle is the best-fit.
I If considering only single-hurdle models, then

GPD-hurdle fits better than NB-hurdle for most species.

Current Work & Future Considerations

I Investigate other distributions, i.e., log-normal models.
I Expand study area and incorporate new data.
I Treat threshold parameter ψ as unknown.
I Maps of “persistence”, “vulnerability”, ...
I Incorporate climate models.
I Point-process models.

I Shiny app.
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