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a  b  s  t  r  a  c  t

Sea-level  rise  and  human  development  pose  significant  threats  to  shorebirds,  particularly  for  species
that  utilize  barrier  island  habitat.  The  piping  plover  (Charadrius  melodus)  is a federally-listed  shorebird
that  nests  on  barrier  islands  and  rapidly  responds  to changes  in  its  physical  environment,  making  it  an
excellent  species  with  which  to model  how  shorebird  species  may  respond  to habitat  change  related
to  sea-level  rise  and  human  development.  The  uncertainty  and  complexity  in predicting  sea-level rise,
the  responses  of barrier  island  habitats  to sea-level  rise,  and the  responses  of  species  to  sea-level  rise
and  human  development  necessitate  a  modeling  approach  that  can  link  species  to the  physical  habitat
features  that  will  be altered  by  changes  in  sea  level  and  human  development.  We  used  a Bayesian  network
framework  to  develop  a model  that links  piping  plover  nest  presence  to  the  physical  features  of  their
nesting  habitat  on  a barrier  island  that  is impacted  by  sea-level  rise  and  human  development,  using  three
years  of  data  (1999,  2002,  and 2008)  from  Assateague  Island  National  Seashore  in  Maryland.  Our  model
performance  results  showed  that  we  were  able  to successfully  predict  nest  presence  given  a  wide  range
of physical  conditions  within  the  model’s  dataset.  We  found  that model  predictions  were  more  successful
when  the ranges  of  physical  conditions  included  in  model  development  were  varied  rather  than  when
those  physical  conditions  were  narrow.  We  also  found  that  all model  predictions  had  fewer  false  negatives
(nests  predicted  to  be absent  when  they were  actually  present  in  the  dataset)  than  false  positives  (nests
predicted  to be  present  when  they  were  actually  absent  in the  dataset),  indicating  that  our  model  correctly
predicted  nest  presence  better  than  nest  absence.  These  results  indicated  that  our approach  of  using  a
Bayesian  network  to link  specific  physical  features  to nest  presence  will  be  useful  for  modeling  impacts

of  sea-level  rise  or  human-related  habitat  change  on barrier  islands.  We  recommend  that  potential  users
of this  method  utilize  multiple  years  of  data  that represent  a wide  range  of  physical  conditions  in model
development,  because  the  model  performed  less  well  when  constructed  using  a narrow  range  of  physical
conditions.  Further,  given  that there  will always  be some  uncertainty  in  predictions  of  future  physical
habitat  conditions  related  to  sea-level  rise and/or  human  development,  predictive  models  will  perform
best  when  developed  using  multiple,  varied  years  of  data  input.
� This is an open-access article distributed under the terms of the Creative Com-
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1. Introduction

Many shorebird species are threatened by the impacts of sea-
level rise and human development on their habitats, particularly
their low-lying habitats found on barrier islands. Barrier islands
are long, narrow landforms that fringe mainland coasts, and are
bounded on one side by an ocean, gulf, or sea, and on the other side

by a lagoon that abuts the mainland (Davis and FitzGerald, 2004).
Along the US Atlantic Coast, barrier islands stretch from Maine
to Florida, or some 3700 km and encompass an area of 6800 km2

(Zhang and Leatherman, 2011). These barrier islands provide vital
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reeding habitat for many shorebird species, including the piping
lover (Charadrius melodus), a shorebird that was federally listed as
hreatened along the US Atlantic Coast under the US Endangered
pecies Act in 1986 (US Fish and Wildlife Service, 1985).

Piping plover nest site selection is driven by the need to select
abitat features that maximize access to reliable food sources
nd minimize flooding from overwash or storms, predation, and
ntraspecific/interspecific competition for food resources. A bal-
ncing of these selective forces results in plovers typically nesting
n flat, open, low-lying dry sand or pebble beaches (Houghton,
005) with clumped sparse vegetation (Cohen, 2005; Cohen et al.,
008), adjacent to moist substrate habitat (MOSH) where plovers
eed (Cohen, 2005), near dunes (Burger, 1987; Powell and Cuthbert,
992), and away from the high tide boundary (Cohen, 2005).

Piping plovers select nest sites based on the proximity to MOSH
here they feed. On barrier islands, MOSH is most commonly asso-

iated with bayside or sound-side low wave energy beaches (Cohen,
005; Cohen et al., 2009; Keane, 2002) but is generally character-

zed by habitat features such as intertidal mud  flats or sand flats,
nd ephemeral pools that are rich in preferred prey resources (Elias
nd Fraser, 2000; Fraser et al., 2005; Keane, 2002; Patterson et al.,
991). Access to a reliable food source is such a vital determi-
ant of nest site selection that piping plovers preferentially nest
djacent to MOSH (Loegering and Fraser, 1995) even when pre-
ented with physical barriers that prevent chicks from accessing
he MOSH (Fraser et al., 2005; Keane, 2002; Loegering and Fraser,
995; Patterson et al., 1991).

Piping plovers select bayside or sound-side habitat for nesting
ot only because of its likely greater proximity to MOSH, but also

or the increased protection from flooding, as bayside habitat is far-
her from oceanfront wave action than ocean-side habitat, and is
ften separated from the oceanfront by dunes. Plovers that nest
n ocean-side beaches typically place nests above the daily and
pring high-tide flood levels and close to dunes to avoid overwash
vents (Maslo et al., 2011). The areas of bare sandy, pebble, or gravel
ubstrate pocketed with clumps of vegetation that typically char-
cterize plover nesting sites offer camouflage from predators for
dults and their eggs and chicks (MacIvor, 1990; Maslo et al., 2011;
atterson et al., 1991).

Despite our extensive knowledge on the relationship between
iping plover nest site selection and physical features of bar-
ier islands, there has been little work done to explicitly link
ow sea-level rise or human-induced alterations in barrier island
eomorphology affect the physical habitat features selected by nes-
ing piping plovers. Barrier islands’ positions between the ocean
nd mainland make them particularly attractive for commercial
nd residential real estate while their generally low elevations
ake them highly vulnerable to the effects of sea-level rise; these

onflicting attributes often result in the demand for shoreline pro-
ection measures that may  actually degrade habitats and resilience
n the long-term (Feagin et al., 2005; Houston, 2008; Schlacher et al.,
007; Weinstein et al., 2007). Recent studies on the effects of sea-

evel rise on barrier islands have emphasized the need for further
esearch on the uncertainty that these anthropogenic factors intro-
uce into the complex process of modeling sea-level rise effects on
abitats and species (Chu-Agor et al., 2012; Convertino et al., 2011;
eavey et al., 2011).

Piping plovers respond rapidly to physical changes in their envi-
onment (Cohen et al., 2009; Kumer, 2004; Schupp et al., 2013) and
re thus an ideal indicator species to model the effects of sea-level
ise and human development on barrier island habitat and shore-
irds, as has been done in previous studies (Aiello-Lammens et al.,

011; Seavey et al., 2011). The models used in these previous stud-

es delineated general shorebird habitat based on historical nesting
ocations, and applied sea-level rise and/or human development
cenarios to those known nesting habitats. To accurately predict
delling 276 (2014) 38– 50 39

how sea-level and human development driven changes in barrier
island physical features will impact piping plovers, we need to link
piping plover habitat selection to those physical features that will
be altered by these processes. Our objective in this paper was to
develop and test a model that links piping plover nest presence
or absence to these physical features of their nesting habitat using
data readily available across the breeding range via remote sensing
tools and minimal on-the-ground effort for beach managers.

We used a Bayesian network (BN) modeling framework to
accomplish our objective. A BN is a type of directed graphical model
with nodes that represent variables and arcs (i.e. arrows) that
represent conditional dependencies among variables. The graph-
ical structure of BN’s provide a clear representation of the links
among variables that facilitates their use as a resource management
tool across multiple disciplines and stakeholder groups (Uusitalo,
2007). The conditional probability distributions for each variable
are derived using Bayes’ Theorem, and thus BNs can be readily
updated as new information becomes available and are easily
adapted to a variety of circumstances. Furthermore, the conditional
probability distributions can be derived and updated using vari-
ous forms of data, including data with missing observations, thus
allowing uncertainty to be propagated through the network (Koller,
2009). Our ultimate aim in developing this model was to provide a
tool for managers to predict piping plover nest presence or absence
under various scenarios of sea-level rise and human development.
The BN’s explicit graphical representation, flexibility, adaptabil-
ity, and incorporation of uncertainty provided us with the ideal
framework with which to build such a model.

In this paper we  present how we constructed a BN (Koller, 2009;
Pearl, 1988) to link piping plover nest presence to the physical fea-
tures of a barrier island in Assateague Island National Seashore
(ASIS), MD,  based on data collected in 1999, 2002, and 2008. We
then assess how well the model predicted nest presence or absence
within and across years, and how varying ranges of the specific
physical features influenced the likelihood of predicting plover nest
presence or absence. Finally, we discuss how this model can be sim-
plified and applied to other coastal sites and used to predict future
changes in piping plover populations related to sea-level rise and
human development.

2. Methods

2.1. Study site and model variables

The study area encompassed the northern 10 km of ASIS,
hereafter ‘the North End’. ASIS is located on Assateague Island,
Maryland, a 58-km barrier island off the coasts of Maryland and
Virginia, US (38◦05′ N, 75◦12′ W,  Fig. 1). Assateague Island sup-
ports a mosaic of habitats ranging from marsh and mudflats on
the bayside, to coniferous and deciduous forest in the interior,
and dunes and sandy beach on the ocean-side. As a barrier island,
Assateague Island has low elevations with a mean cross-shore ele-
vation of approximately 4 m above mean sea level (all elevations
in this study referenced to North American Vertical Datum 1988
mean sea level, 0.34 m NAVD88) and narrow widths ranging from
approximately 220–4500 m. The North End is particularly low lying
and narrow, with a mean cross-shore elevation of approximately
1 m above mean sea level and widths ranging from approximately
260–700 m,  and has held more than 90% of the total Maryland pip-
ing plover nesting population since the National Park Service (NPS)
began monitoring plover nesting populations here in 1992.
The North End’s particularly low elevation and narrow width
compared to the rest of Assateague Island make this area especially
vulnerable to storm damage. Severe winter storms in late January
and early February 1998 washed over the entire width of the island
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Fig. 1. We used piping plover (Charadrius melodus) nest locations and random points without nests, and data on physical features, from the northern 10 km of Assateague
Island  National Seashore, MD,  USA, to construct a Bayesian network to predict the probability of nest presence and absence. A human modification, a low foredune constructed
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n  1998 and composed of coarse sediment mined offshore, is also depicted. This for
chupp et al., 2013), which resulted in markedly different environments from one s

long a 2.4 km section of the North End used by piping plovers as
esting habitat (Sallenger et al., 1999; Schupp et al., 2013). The
orth End’s particularly low elevation and narrow width is perpet-
ated by an interruption of alongshore sediment deposition caused
y a permanent jetty constructed to maintain the Ocean City Inlet
o the north after this inlet was created by a hurricane in 1933
Dean and Perlin, 1977; Rosati and Ebersole, 1997). To compensate
or the interruption in sediment and to prevent particularly vulner-
ble sections of the North End from breaching during severe storm
vents, the US Army Corps of Engineers (USACE) constructed a low
oredune after the storms in 1998 along the length of the 2.4 km sec-
ion that was washed over during the severe storm events of that
ame year (USACE, 1998). The foredune (Fig. 1) was constructed to a
aximum height of 3.05 m using material dredged from an offshore

hoal. The foredune’s design was meant to allow for climatic forces
nd storm effects that would gradually erode the foredune while
reventing breaching during severe storm events until a more per-
anent restoration plan could be devised to mitigate the effects

he inlet had on the North End (USACE, 1998). This comprehen-
ive restoration plan incorporated a one-time replacement of 15%
f the volume of sediment lost to the inlet since 1934 and a bi-
nnual replenishment of the sediment supply that continues to
e interrupted by the inlet. The one-time replacement was con-
ucted in 2002 and replaced approximately 1.4 million m3 of sand
cross a 10.5 km alongshore distance of the North End, widening
he beach along this length by approximately 30 m.  The bi-annual

eplenishment began in 2004 and continues through present, bi-
nnually replenishing approximately 144,000 m3 of sediment to
he nearshore of the North End adjacent to the 2.4 km section where
he low foredune was constructed (Schupp et al., 2013; USACE,
 played a significant role in modifying the habitat on the North End over time (see
year to the next.

1998). The height of the foredune resulted in a lack of overwash
despite increased hurricane activity in subsequent years, result-
ing in widespread vegetation encroachment behind the foredune
(Carruthers et al., 2011, 2013; Schupp et al., 2007, 2013; Fig. 2).

Piping plovers tend not to nest in thick vegetation because they
cannot see approaching predators and also because their flightless
chicks have difficulty navigating through dense vegetation to reach
foraging sites (Cohen et al., 2009). Thus vegetation growth over time
rendered many of the areas used by piping plovers before the 1998
storms and foredune construction unsuitable for nesting.

We used data on piping plover nest locations, random points,
and physical features from nest and random points from the nesting
seasons of 1999, 2002, and 2008. While the NPS has been collecting
data on breeding piping plovers since 1992, habitat data were not
available for every year. These three years were selected for analy-
ses because there were data available for a large proportion of the
physical features in our model.

Geographic coordinates of all piping plover nest locations were
recorded by NPS staff immediately upon finding a nest, using
a backpack Global Positioning System (GPS; make and model
unrecorded) with a horizontal accuracy of ±5 m in 1999 and 2002,
and a Trimble Pathfinder ProXH DGPS with a horizontal accuracy
of ±1 m in 2008. We  generated an equal number of random points
as the number of actual plover nests for each year using ArcGIS10.
Random points were defined as being without a nest in sites with
a vegetation density and composition amenable to plover nesting

(e.g., dense woody vegetation was excluded because piping plovers
do not nest in forested habitats).

Data on physical features of both nest points and random points
were derived from airborne elevation data, aerial photo images
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Fig. 2. Distribution of piping plover (Charadrius melodus) nests and vegetation types (sparse, herbaceous, woody) recorded by National Park Service staff in their habitat
maps  in 1999 (a), 2002 (b), and 2008 (c) on the North End of Assateague Island National Seashore, MD,  USA. The Atlantic Ocean is on the east side of the island while the
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ole  in modifying the habitat on the North End over time (see Schupp et al., 2013) a

f the North End (Bonisteel et al., 2009; Brock et al., 2002), and
eld-constructed habitat maps. NPS staff created habitat maps by
alking boundaries of vegetation types defined as sparse (contin-
ous vegetation density <20% within at least 25 m2), herbaceous
continuous vegetation density >20% within at least 25 m2), and
oody (areas of woody shrubs and trees that were recognizable

rom an unspecified distance) using the same GPS units as described
bove. Boundaries that were not walked due to time and resource
onstraints were delineated by park staff using aerial photographs
or each respective year (Schupp et al., 2013). We  derived the fol-
owing 12 variables for our BN (Fig. 3):

Nest attempt response variable: binary variable indicating
hether a location was  a piping plover nest or a random point.

Beach width: the width (m)  of the beach at the location of the
est or random point, calculated as the horizontal distance between
he dune toe (the low elevation point at the base of the dune) posi-
ion and the position of the mean low tide water boundary (MLW).
he beach width, particularly along the 2.4 km section where the
oredune was constructed, is artificially enhanced by the additional
i-annual sediment input from the comprehensive restoration plan
described in the study site section).

Distance to dune crest: the distance (m)  of each nest or random
oint to the dune crest (the high elevation point at the top of the
une, Stockdon et al., 2007, 2009). Dune crest points were con-
erted to a line in ArcGIS10, and the perpendicular distance of this
ine to each nest and random point without nest was  calculated
sing the Near Tool in ArcGIS10.
Distance to dune toe: the distance (m)  of each nest or random
oint to the dune toe (i.e. break in slope at the base of the dune;
tockdon et al., 2007, 2009). Dune toe points were converted to

 line in ArcGIS10, and the perpendicular distance of this line to
ediately surrounding a low foredune constructed in 1998 that played a significant
lso where a majority of piping plovers nested from year to year.

each nest and random point was  calculated using the Near Tool in
ArcGIS10.

Distance to mean high water (MHW) bay: the distance (m) of
each nest or random point to the MHW  tideline on the mainland
side (i.e., backshore) of the barrier island. The backshore boundary
was derived by manipulating the lidar datasets. Specifically, the
National Oceanographic and Atmospheric Administration’s VDa-
tum software (Yang et al., 2008) was  used to adjust the elevation
data with respect to local MHW.  From these data, a MHW  contour
was defined in ArcGIS10 using the Contour Tool and the perpen-
dicular distance of this line to each nest and random point was
calculated using the Near Tool. There were cases where the lidar
data along the backshore was not of sufficient resolution to define
a MHW  contour. In these cases, either the 2008 backshore or the
backshore derived from a 2003 aerial photo was used to approx-
imate this shoreline, depending on which of these sources most
closely approximated the MHW  contour. The derived backshore
contour was also double-checked against aerial photographs for
the year corresponding to the lidar dataset to verify that it approx-
imated the visible coastline for that year.

Distance to mean high water (MHW) ocean:  the distance (m)  of
each nest or random point to the MHW  tideline on the ocean-facing
shore of the barrier island. This boundary was derived from lidar
datasets as the line on the topographic surface that intersects MHW,
adjusting for regional tidal datum elevation estimates (Stockdon
et al., 2002; Weber et al., 2014). MHW  ocean points were converted
to a line in ArcGIS10, and the perpendicular distance of this line to

each nest and random point was  calculated using the Near Tool in
ArcGIS10.

Distance to mean low water (MLW) bay: the distance (m)  of each
nest or random point to the MLW  tideline on the backshore, derived
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Fig. 3. Conceptual diagram illustrating the features we  used to define the 12 physical and site fidelity variables in our Bayesian network, including the distances to features.
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HW  and MLW  are the mean high water and mean low water boundaries, respectiv
ere  calculated from points to features, and beach width, elevation, slope, and veg

f  a nest from the previous year. Slope is the mean slope of a 5 m radius around the

sing the same procedure as for distance to MHW  bay described
bove. The area between the MLW  and MHW  tideline on the back-
hore of the North End can be highly variable, whereas there is
ittle variation in the area between the MLW  and MHW  tideline
n the ocean-facing shore on the North End. Therefore, distance to
he MLW  ocean-facing shore was not included as a variable in the

odel.
Distance to moist substrate habitat (MOSH): MOSH was identi-

ed by conducting a supervised habitat classification in ArcGIS10,
sing the Maximum Likelihood Classification tool to classify color

nfrared (CIR) aerial photos of the study area. The classified regions
ere then used to identify and create polygons corresponding to
ifferent substrates on the barrier island. For areas where MOSH
as identified and correlated to a specific CIR class, comparisons
ere made with aerial photographs to confirm these designations.
nce defined, the shortest perpendicular distance (m)  from the
OSH contour to each nest or random point was calculated using

he Near Tool in ArcGIS10. Data for this variable were extracted for
008 only, because infrared aerial photos were only available for
hat year.

Elevation: vertical height (m)  above mean sea level calculated
sing the Extract Values to Points Tool in ArcGIS10 from lidar
atasets for each nest and random point.

On Foredune: binary variable specifying whether nests and ran-
om points were located on or off the foredune constructed in 1998.
he edge of the foredune was based on an outline that was cre-
ted by NPS staff walking the boundary of the foredune using the

ame GPS unit as was used to create habitat maps. This foredune
oundary was walked in 1998, 2002, and 2006. To define nests and
andom points that were on or off the foredune in 1999, we  used
he 1998 boundary. For 2002 nests and random points, we used the
l distances, beach widths, and point elevations were calculated in meters. Distances
n were defined at points. Site fidelity represents whether a point was within 75 m
. Points represent nests and random samples.

2002 boundary, and for 2008 nests and random points, we used the
2006 boundary.

Site fidelity: binary value specifying whether nests and ran-
dom points were within or outside of a 75 m radius around a nest
location from the previous year. A distance of 75 m was  selected
based on long-term monitoring of nest locations and intra-year
movements of color-marked piping plovers on the Missouri River
(Friedrich et al., 2014).

Slope: a slope surface grid was generated using lidar datasets
for each year and the Slope Tool in ArcGIS10. The Zonal Statistics
Tool in ArcGIS10 was  then used to pass the nest or random points,
buffered by a 4 m radius, through the slope grid to obtain the mean
slope (%) at the nest or random point.

Vegetation:  variable that designated the general type and density
(sparse: <20%, or herbaceous: >20% continuous ground cover within
a minimum area of 25 m2) of vegetation at the nest or random point.
There were no nests or random points in woody vegetation, so
this category was excluded. Vegetation data and categories were
obtained from the ground-based habitat maps created by the NPS
(see Section 2.1 and Schupp et al., 2013).

The number of nest and random points varied by year and
among variables due to variability in the data layers’ coverage and
quality. For example, in 1999, data for distance to dune crest were
complete with a total of 146 values, however several beach width
points were missing from the 1999 dataset, resulting in 141 values
(Table 1). Still other variables, such as distance to MLW  bay and
to MOSH in 1999, and distance to dune toe, to MLW  bay, and to

MOSH in 2002, were completely missing from the dataset, and so
had no values for that year. We  removed variables from the network
for years where they were completely missing from the dataset,
but we did not omit variables that had occasional gaps from the
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Table 1
List of variables and bin categories included in our Bayesian network linking physical features and site fidelity to piping plover (Charadrius melodus) nest presence and
absence, using three years of data on nest points and random points without nests from Assateague Island National Seashore, MD,  USA.

Variablea Number of real values (n)b Bin categoriesc

1999 2002 2008 1 2 3 4 5

Beach width (m)  119 117 140 0–50 50–100 100–150 150–200 200–400
Distance to dune crest (m) 144 122 140 0–100 100–200 200–400 400–600 600–1000
Distance to dune toe (m)  144 0 140 0–100 100–200 200–400 400–600 600–1000
Distance to MHW  bay (m)  144 122 140 0–100 100–200 200–300 300–400 400–1000
Distance to MHW  ocean (m)  144 122 140 0–100 100–150 150–200 200–300 300–1000
Distance to MLW  bay (m)  0 0 140 0–100 100–200 200–300 300–400 400–1000
Distance to MOSH (m)  0 0 140 0–75 75–150 150–225 225–375 n/a
Elevation (m) 144 122 140 −0.5 to 0.5 0.5–1.5 1.5–2.5 2.5–3.5 n/a
Nest  attempt 144 122 140 Absent Present n/a n/a n/a
On  foredune 144 122 140 No Yes n/a n/a n/a
Site  fidelity 144 122 140 None Potential n/a n/a n/a
Slope  (%) 144 110 140 0–2.5 2.5–5.0 5–7.5 7.5–50 n/a
Vegetation 144 122 140 Sparse Herbaceous n/a n/a n/a

a “Beach width (m)” is the horizontal distance between the dune-toe boundary and the mean low water (MLW)  line, “Distance to dune crest (m)” is the perpendicular
distance from the dune high boundary to the nest or random point without nest, “Distance to dune toe (m)” is the perpendicular distance from the dune low boundary to the
nest  or random point without nest, “Distance to MHW  bay (m)” is the perpendicular distance from the mean high water bay boundary to the nest or random point without
nest,  “Distance to MHW ocean (m)” is the perpendicular distance from the mean high water ocean boundary to the nest or random point without nest, “Distance to MLW
bay  (m)” is the perpendicular distance from the mean low water bay boundary to the nest or random point without nest, “Distance to MOSH (m)” is the closest distance
from  a moist substrate area to the nest or random point without nest, “Elevation (m)” is the vertical height above sea-level of the nest or random point without nest, “Nest
attempt” indicates a nest (present) or random point without nest (absent), “On foredune” indicates whether the nest or random point without nest is on (yes) or off (no) a
constructed foredune, “Site fidelity” indicates whether a nest or random point without nest is within 75 m (potential) or not (none) of a nest or random point without nest
from  the preceding year, “Slope (%)” is the average rise over run within a 5 m radius of the nest or random point without nest, “Vegetation” is the general type and density
of  vegetation at the nest or random point without nest.

b Real values of ‘0′ indicate variables for which no data was  available and thus were not included in the network. Variables that have lower real values than the highest
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eal  value for that year indicate a certain proportion of data was  not available. The
o  accommodate missing data.

c Bin categories are non-overlapping.

etwork because BN’s are designed to incorporate missing data.
ncertainty is propagated through the network because missing
alues are explicitly incorporated into the probability distributions
hat determine the likelihood of the outcome.

.2. Model development

We  first created a diagram, based on previous literature and
xpert opinion, that illustrated how each of 12 explanatory vari-
bles (i.e. physical features of piping plover nesting habitat)
nteracted and how each explanatory variable influenced the
esponse variable of plover nest presence or absence (Burger, 1987;
ohen, 2005; Cohen et al., 2008, 2009; Houghton, 2005; Maslo et al.,
011; Powell and Cuthbert, 1992). Next, we converted this diagram

nto a BN using Netica 4.16 (Fig. 4). Each variable in the BN was  indi-
ated by a node (box) that represented a set of probabilities that
ere conditional on the other variables in the network (illustrated

y arrows; Fig. 4); the variables that feed into other variables are
nown as parent nodes and the variables that parent nodes feed
nto are known as child nodes. The final step in constructing the
N was to calculate conditional probability distributions for each
ariable in the network; these distributions can be calculated based
n scientific literature, expert opinion, or by fitting the network to
bserved data (Charniak, 1991). We  used three years of observed
ata (1999, 2002, 2008) to calculate the conditional probability dis-
ributions for each variable. The set of probabilities for each child
ode was conditioned on every possible combination of states for

ts parent nodes. The final constructed Bayesian network graph-
cally represented the joint probability distribution over a set of
tatistical variables, described mathematically as:

(X1. . .Xn) =
∏

P (Xi Pa(Xi))

i

here P(Xi) is the probability of a variable Xi and Pa(Xi) is a parent
ariable of Xi in a Bayesian network (Koller et al., 2007).
iables were still included in the network, because Bayesian networks are designed

2.3. Assessing model performance

We generated the BN’s conditional probability distributions
(hereafter “trained”) with each year of data (1999, 2002, 2008)
and assessed model performance in predicting the response of
nest presence or absence for each year and combinations of years.
Within individual years, we assessed how well the model per-
formed (hereafter “single year models”). We  tested combinations
of years by training the model on one year, two  years, or all three
years of data and assessing how well the model predicted nest pres-
ence or absence for one year, two  years, or all three years, covering
all possible combinations (hereafter “multiple year models”). If data
were completely missing for a variable in one year, we  removed that
variable in multiple year models as well. We  used log-likelihood
ratios (LR) and error to assess prediction accuracy, and outcome
uncertainty (Marcot, 2012) in various model scenarios that were
based on single year and multiple year datasets.

LR values indicate the likelihood of a model’s prediction for a
given observation over the prior likelihood for that observation. The
prior probability can be generated based on previous knowledge,
data, or can be a prior that is uninformed if insufficient knowledge
of data exists. We  generated model predictions based on inputs
from the existing datasets and a noninformative, uniformly dis-
tributed prior (also termed vague, flat, or diffuse; Kéry and Schaub,
2012) for the nest presence/absence variable. To calculate an LR
value for a model, the probabilistic prediction is weighed against
the corresponding prior probability, described mathematically as:

LRi = log{P(Oi)} − log{pprior(Oi)}

where LRi is the likelihood ratio. p(Oi) is the prediction probability
for the observation Oi. pprior(Oi) is the corresponding prior proba-

bility for the observation Oi.

If LR = 0, then log{p(Oi)} = log{pprior(Oi)} indicating the pre-
diction is just as likely as the prior and the prediction offers no
improvement.
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Distance  to  MHW ocean  (m)
0 t o 10 0
100 to 15 0
150 to 20 0
200 to 30 0
300 to 100 0

19.1
27.0
20.0
17.2
16.7

230 ± 22 0

Distance  to dun e cres t (m)
0 t o 10 0
100 to 20 0
200 to 40 0
400 to 60 0
600 to 100 0

60.0
18.6
17.2
3.45
0.69

132 ± 13 0

Nes t att empt
Absent
Presen t

49.9
50.1

0.501  ± 0.5

Vegetatio n
Sparse
Herbaceous

50.8
49.2

0.492  ± 0.5

Beach  wid th  (m)
0 t o 50
50 to 10 0
100 to 15 0
150 to 200
200 to 40 0

15.2
28.3
48.3
7.59
0.69

101 ± 48

Distance  to  MLW b ay (m)
0 t o 10 0
100 to 20 0
200 to 30 0
300 to 40 0
400 to 100 0

14.9
22.3
24.1
25.2
13.6

284 ± 20 0

Elevation  (m)
-0.5 t o 0.5
0.5 t o 1.5
1.5 t o 2.5
2.5 t o 3.5

23.8
26.4
26.9
22.9

1.49 ± 1.1

Site fid elity
None
Poten tial

52.1
47.9

0.479  ± 0.5

On  foredun e
No
Yes

71.8
28.2

0.282 ± 0.45

Distance  to  MOSH (m)
0 t o 75
75 to 15 0
150 to 22 5
225 to 37 5

33.1
23.0
25.5
18.5

141 ± 98

Distance  to  MHW b ay (m)
0 t o 10 0
100 to 20 0
200 to 30 0
300 to 40 0
400 to 100 0

21.2
20.0
28.3
20.4
10.1

253 ± 19 0

Slop e (%)
0 t o 2.5
2.5 t o 5
5 t o 7.5
7.5 t o 50

39.1
39.1
13.1
8.68

5.27  ± 8.3

Distance  to dun e toe (m)
0 t o 10 0
100 to 20 0
200 to 40 0
400 to 60 0
600 to 100 0

61.2
15.3
17.4
3.74
2.38

143 ± 16 0

Fig. 4. Bayesian network showing probabilities of piping plover (Charadrius melodus) nest presence (50.1%) and absence (49.9%) conditioned on 2008 data from all 12 physical
and  site fidelity variables from Assateague Island National Seashore, MD,  USA; constructed using Netica BN software (Norsys, 1992–2010). The probabilities are similar for
nest  presence and absence because the data included near equal numbers of nest and random points. Variables for which there was  no data in 1999 (i.e. distance to MLW
bay  and to MOSH) and 2002 (i.e. distance to dune toe, to MLW  bay, and to MOSH) were excluded from the network for those years and for combined years including those
years,  although the structure remained the same as that of 2008. Arrows represent the direction of conditional dependencies among variables, and black bars represent
the  probabilities for each state, with specific probability values indicated next to the bars. Numbers at the bottom of nodes are mean (i.e. expected value) and standard
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eviation. For continuous variables, the mean is represented mathematically by the 

s  represented by the equation � = ˙xx p(x).

If LR > 0, then log{p(Oi)} > log{pprior(Oi)}, indicating the pre-
iction is more likely that the prior and the prediction is an

mprovement.
If LR < 0, then log{p(Oi)} < log{pprior(Oi)}, indicating the predic-

ion is less likely than the prior (Weigend and Bhansali, 1994).
Being a hind-casting model, we assessed model prediction accu-

acy by verifying the extent to which the predictions matched the
ctual observations of nests and random points for single year and
ultiple year datasets. We  thus generated LR values for various
odel scenarios (hereafter, ‘LRpredict’) and compared these values

o reference LR values for those same models. The reference LR
alues represented perfect predictions because they were based
olely on the actual nest and random point location data for the
orresponding model (hereafter, ‘LRactual’). In other words, LRpredict
ndicated the likelihood of our model predictions compared to
he likelihood of the uninformed priors for those models, whereas
Ractual indicated the likelihood of the actual data for each model
ompared to the likelihood of the uninformed priors for those
odels. We  calculated a percentage change for each model that

epresented the change in the LRpredict from the LRactual:

ercentage change = LRpredict − LRactual∣ ∣ × 100
∣LRactual
∣

A change of 0 would thus represent a model in which the pre-
iction was just as likely as the actual data (i.e. the prediction is
ion � =
∫ ∞

−∞
xp(x) dx and for discrete variables with assigned state values, the mean

highly accurate because it perfectly matches the actual data). Thus,
0% change would indicate that the response variable (nest pres-
ence or absence) depended strongly on the explanatory variables.
A negative change would indicate the prediction is less accurate
(i.e., the response variables are less dependent on the explanatory
variables) than the data. The more negative the difference, the less
dependent the response variable is to the explanatory variables. A
change of −100% would be produced from an LRpredict of 0, thus
indicating that the model is no better than the uninformed prior.
Positive change would be impossible because the prediction would
have to fit the model better than the actual data.

Error values quantify the proportion of predictions that did not
match the actual data; for example, a prediction of nest presence at
a location where no nest was observed and vice versa. We  explored
outcome uncertainty from these errors by analyzing the proportion
of true positives, true negatives, false positives, and false negatives
in our model predictions. True positives are cases where nest pres-
ence predictions matched observed nests, and true negatives are
cases where nest absence predictions matched randomly selected
observation points where nests were not found. False positives are
cases where the model predicted nest presence but in the actual
data a nest was not present, and false negatives are cases where

the model predicted the absence of a nest but there actually was  a
nest in the data. Many true positives and few false negatives indi-
cate that the model is able to predict nest presence with a high
degree of certainty. Many true negatives and few false positives



cal Mo

i
d
c

i
i
p
c
n
a
t
c
2

2

(
s
m
t
e
s
u
m
t
d
r
m
i
a
t
b
p
a
p

m
r
v
(
v
r
a
v
v
a
o
s
a
t
L
l
a
e
a

2

f
s
a
t
s
d

K.D. Gieder et al. / Ecologi

ndicate that the model is able to predict nest absence with a high
egree of certainty. All LR and error values were generated using
ode developed in MATLAB 8.2.

We additionally assessed outcome uncertainty by using Net-
ca’s graphical interface to change the probabilities of each variable
n our network to reflect conditions that were favorable (highest
robability of a nest being present, given a specific range of physi-
al variables) and unfavorable for nesting (highest probability of a
est being absent, given a specific range of physical variables). We
nalyzed these probabilities in conjunction with visual observa-
ions of changes in nest distributions and by using habitat maps to
alculate the percent change in sparsely vegetated habitat in 1999,
002, and 2008.

.4. Assessing model sensitivity

We  assessed model sensitivity to variables in two unique ways
Marcot, 2012). First, within each single year model, we assessed
ingle variable influence by comparing the difference in LR of the
odel before and after sequentially removing each variable. In

his case, the network was trained using all available variables for
ach year and predictions were generated after each variable was
equentially removed. This method of sensitivity analysis allowed
s to compare the sensitivity rankings of variables in our single year
odels, thus indicating whether the posterior probability distribu-

ions for variables in our 1999, 2002, and 2008 single year models
iffered. Second, we assessed the effect on model performance of
emoving variables completely from the dataset used to train the
odel and generate predictions. This method of variable removal

s useful to future users of this model who may  be limited by data
vailability and need to have an understanding of the impact of
hese limitations. Further, the most parsimonious model is desired
y researchers as well as managers. In this case, we  used our best
erforming single year and multiple year models to explore vari-
ble removal because we wanted to compare the effects on model
erformance of variable removal across a range of datasets.

To determine a sequence for removing variables in the latter
ethod of assessing model sensitivity, we first tested the effects of

emoving each variable individually on model performance. Indi-
idual variables that did not have any effect on model performance
i.e. no change in LR or error values between the model with the
ariable removed and the model with all variables included) were
emoved in combination from the model. Because some of the vari-
bles were not available in all years, we additionally removed the
ariables that were only available in one year. For the remaining
ariables, we assessed whether any were highly correlated. If not
lready removed by the steps above, we compared how the removal
f each variable from any pair of highly correlated variables (Pear-
on product-moment correlation coefficient of >0.75 or <−0.75)
ffected model performance and removed the variable of the pair
hat was the most difficult, time-consuming, or expensive to obtain.
astly, as many of the explanatory variables were extracted from
idar data and aerial photography, which are not always available
t a site and are expensive to obtain, we additionally removed all
xplanatory variables that could be obtained solely from lidar and
ssessed the performance of this very simple model.

.5. Model applications

We  present two examples of how our model’s Bayesian network
ramework can be used to test hypotheses about piping plover nest
ite selection on barrier islands; the testing approach and results

re described in Section 3. We  hypothesized that including nests on
he foredune would increase model uncertainty because the con-
tructed foredune was an anomalous nesting area for piping plovers
ue to the fact that it is an elevated feature (‘foredune hypothesis’
delling 276 (2014) 38– 50 45

in Section 3). We  based this hypothesis on previous literature on
piping plover nest site selection, which shows that, in the absence
of this feature, plover nest sites would be predominantly located
on flat, low elevation bayside sites where plovers would have the
best access to low-energy MOSH (Cohen, 2005; Fraser et al., 2005;
Houghton, 2005). We  used our best overall performing model to
test this hypothesis by comparing its performance when trained
and predicting for a dataset based only on points that were off the
constructed foredune to a dataset based only on points that were
on the foredune.

We also hypothesized that we could use our BN to illustrate
that shifting distributions of plover nests (‘shifting distributions
hypothesis’ in Section 3) were related to certain habitat changes
that occurred from 1999 to 2008. Visual observations of nest dis-
tributions in ArcGIS revealed that nests in 2008 appeared to be
concentrated closer to the ocean high tide line and dune line, which
followed closely the boundary of sparse and herbaceous vegetation
compared to 1999 when nests were spread out across the interior
of the island, closer to the bayside high tide line, and farther from
dunes and the ocean high tide line (Fig. 2). We  predicted based
on these visual observations that conditions favorable for plover
nesting should transition, following foredune construction, from
preferred low elevation, low slope, sparsely vegetated areas near
bayside MOSH toward the less-preferred ocean-side and closer to
the dune line to avoid flooding from high tides. We  tested this
hypothesis by comparing the physical conditions that produced
the highest probabilities of nest presence to the conditions that
produced the highest probabilities of nest absence using BNs for
each single year model.

3. Results

3.1. Model performance

3.1.1. Single year
In all scenarios, the LRpredict values were >0 (Table 2), indicating

that the model prediction was  more likely than the prior. The per-
centage change in LR between the actual versus predicted model
output (larger differences indicate less certainty) was  −65% in 1999,
−59% in 2002, and −58% in 2008 (Table 2). Total error (combined
false negatives and false positives) was 17% in 1999, 11% in 2002,
and 3% in 2008 (Table 2). The percentage of total error due to false
negatives (a nest predicted to be absent when it was present in the
data) was  much lower (17% in 1999, 14% in 2002) than the percent-
age due to false positives (a nest predicted to be present when it
was absent in the data; 83% in 1999, 86% in 2002) in both 1999 and
2002. In 2008, the percentage of the overall 3% error due to false
negatives (50%) and false positives (50%) was equal (Table 2).

3.1.2. Multiple year
When we used any one year to train the model, and predicted for

a single different year, we found poor model performance (Table 2).
While all of the LRpredict scores were again positive, we found that
the percentage change in LR was −97% when we trained our model
with 1999 data and asked it to predict nest probability for 2002
and −98% using 2008 data to predict nest probability for 1999. Error
ranged from 43 to 47% for all these cross-year models. The percent-
age of the error that was due to false negatives (a nest predicted to
be absent when it was  present in the data; 0–9%) was again lower
than the percentage of the error that was due to false positives (a
nest predicted to be there but was  absent in the data; 91–100%;

Table 2).

We found improved model performance when we  used all three
years of data to train the model as compared to using a single year to
predict a different year; the percentage change between LRactual and
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Table  2
Model performance metrics indicating accuracy and outcome uncertainty of our Bayesian network that links physical features and site fidelity to piping plover (Charadrius
melodus)  nest presence and absence, for single year and multiple year dataset combinations based on three years of data from Assateague Island National Seashore, MD,  USA.

Modela Error (%)b Likelihood ratio (LR)c

Total False positives False negatives LRactual LRpredict LR change (%)

D1999 P1999 17 83 17 43 15 −65
D2002 P2002 11 86 14 37 15 −60
D2008 P2008 3 50 50 42 18 −58
D1999 P2002 47 91 9 37 1 −97
D1999 P2008 47 100 0 42 0.6 −99
D2002 P1999 45 92 8 43 1 −98
D2002 P2008 45 98 2 42 0.9 −98
D2008 P1999 46 99 1 43 0.8 −98
D2008 P2002 43 96 4 37 1 −97
Dallyrs P1999 20 72 28 43 15 −66
Dallyrs P2002 11 85 15 37 15 −60
Dallyrs P2008 5 72 28 42 18 −56
Dallyrs Pallyrs 11 74 26 122 48 −60

a “D” indicates the year of data used to generate the conditional probabilities for the model, “P” indicates the year from which model probabilities were derived from.
b Total error is the percentage of the model predictions that did not match the data. False positives indicate the percentage of that total error that was attributed the model

predicting a nest being present when there was no actual nest observed. False negatives indicate the percentage of that total error that was attributed to the model predicting
no  nest being present when there actually was a nest observed. The percent false negatives plus the percent false positives equals 100% of total error.

c LRactual represents the likelihood of the actual data, compared to the likelihood of the prior; LRpredict represents the likelihood of the model predictions given the data,
compared to the likelihood of the prior; LR change represents the percent change in the likelihood of the actual observed data and the likelihood of the model predictions
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error).
When we explored the same sequence of variable removal for

our best performing multiple year model (Dallyrs P2008), we found
similar patterns of high percentages of false positives and low

Fig. 5. Likelihood ratio difference (%) for 12 piping plover (Charadrius melodus) nest
presence variables in 1999, 2002, and 2008 at Assateague Island National Seashore,
MD,  USA. Likelihood ratio difference represents the difference from the likelihood of
the model predictions given data from all 12 variables to the likelihood of the model
iven  the data. Positive LRpredict values indicate that the prediction is more likely 

he  data, with smaller negative values indicating that the likelihood of the predicti
bserved data.

Rpredict was improved and error was lower (5–20%; Table 2). Again,
ost of the total error was explained by false positives (72–85%;

able 2). Training the model on all three years and predicting for all
hree years again improved over any single cross-year prediction,
ith a percentage change in LR of −60% and an overall error of 11%,
ith the majority of that error (74%) again due to false positives

Table 2).

.2. Model sensitivity

Within each single year model, when we assessed individual
ariable influence by comparing the difference in LR of the model
efore and after sequentially removing each variable from models
hat were trained on all variables, we found sensitivity rankings
iffered among all years. Site fidelity and beach slope were the
nly variables that had similar sensitivity rankings across the single
ear models. Site fidelity was the second most influential variable
n 2008 and 2002, and the third most influential variable in 1999.
each slope was the fifth most influential variable in 2008 and 1999,
nd the sixth most influential variable in 2002. The most influential
ariable was beach width in 2008, distance to MHW  bay in 2002,
nd distance to MHW  bay in 1999. The differences in the sensitiv-
ty rankings among the most influential variables within each year

ere very small (Fig. 5). For example, the difference between the
rst and second ranked variable was 1% in 2008, 2% in 2002, and
% in 1999.

When we assessed the effect on model performance of remov-
ng variables completely from the dataset used to train the model
nd generate predictions in our best performing single year model
D2008 P2008), we found no difference between the performance
LR and error values) of the model with all variables included and
he model with the on foredune variable removed, as well as the

odel with distance to dune toe removed. When we  removed these
wo variables in combination, we found the same error (3%) as
or the model with all variables included (Table 3). Distances to

LW bay and to MOSH were only available in 2008; we found the

rror increased to 4% when we removed these variables from the
odel, in addition to removing on foredune and distance to dune

oe. Distance to MHW  ocean and distance to dune crest was the only
emaining highly correlated pair after on foredune, distance to dune
he prior. Negative LR change (%) values indicate the prediction is less likely than
er the data is improved, in other words the predictions closely matched the actual

toe, distance to MLW  bay and distance to MOSH had already been
removed in the steps above. We  removed distance to dune crest
from the model because it was more difficult to obtain a complete
dataset for this variable than it was for MHW  ocean; this removal in
addition to removing on foredune, distance to dune toe, distance to
MLW  bay, and distance to MOSH, did not affect model performance
(Table 3). When we  explored removing any remaining variables
not available through manual field collection (i.e., beach width), in
addition to the variables already removed in the steps above, we
found reduced model performance, with an error of 9% (Table 3).
For this reduced model (that included only four variables; distance
to MHW  ocean, elevation, slope, and vegetation), a majority of the
9% overall error was again due to false positives (63% of the total
predictions after removing each variable. In this case, each single year network was
trained using all available variables for each year and predictions were generated
after each variable was  sequentially removed. The larger the likelihood ratio differ-
ence, the more influential the variable is to nest presence/absence probability. Dist.
means distance.
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Table 3
Model performance metrics of accuracy and outcome uncertainty for our Bayesian network that links physical features and site fidelity to piping plover (Charadrius melodus)
nest  presence and absence, for combinations of variables removed from the datasets derived from Assateague Island National Seashore, MD,  USA. In this case, we analyzed
model  sensitivity by assessing the effect on model performance of removing variables completely from the dataset used to train the model and generate predictions; using
first  our best overall performing model trained on 2008 and predicting based on 2008 (D2008 P2008) and second our best performing model trained on multiple years and
predicting based on 2008 (Dallyrs P2008).

Variable (s) removeda Error (%)b LR difference from full model (%)c

Total False positives False negatives

D2008 P2008 model
None 3 50 50 0
Beach width 4 60 40 −0.7
Distance to dune crest 3 50 50 −0.2
Distance to dune toe 3 50 50 0
Distance to MHW  bay 4 100 0 0.4
Distance to MLW  bay 3 50 50 −0.2
Distance to MHW  ocean 3 50 50 −0.3
Distance to MOSH 4 60 40 −2
Elevation 4 67 33 2
On  foredune 3 50 50 0
Site  fidelity 4 40 60 1
Slope 4 100 0 −0.3
Vegetation 3 50 50 −0.6
FD,  DT 3 50 50 0
FD,  DT, MLWB,  MOSH 4 67 33 −0.8
FD,  DT, MLWB,  MOSH, DC 4 67 33 −0.8
FD,  DT, MLWB,  MOSH, MHWO  6 63 37 −0.5
FD,  DT, MLWB,  MOSH, DC, MHWB,  BW,  SF 9 63 37 −3
Dallyrs P2008 model
FD, DT, MLWB,  MOSH 5 72 28 −0.5
FD,  DT, MLWB,  MOSH, DC 4 67 33 −0.3
FD,  DT, MLWB,  MOSH, DC, MHWB,  BW,  SF 26 73 27 −20

a “Beach width (m)” (BW) is the horizontal distance between the dune-toe boundary and the mean low water (MLW)  line, “Distance to dune crest (m)” (DC) is the
perpendicular distance from the dune high boundary to the nest or random point without nest, “Distance to dune toe (m)” (DT) is the perpendicular distance from the dune
low  boundary to the nest or random point without nest, “Distance to MHW bay (m)” (MHWB) is the perpendicular distance from the mean high water bay boundary to the
nest  or random point without nest, “Distance to MHW  ocean (m)” (MHWO) is the perpendicular distance from the mean high water ocean boundary to the nest or random
point  without nest, “Distance to MLW  bay (m)” (MLWB) is the perpendicular distance from the mean low water bay boundary to the nest or random point without nest,
“Distance to MOSH (m)” (MOSH) is the closest distance from a moist substrate area to the nest or random point without nest, “Elevation (m)” is the vertical height above
sea-level of the nest or random point without nest, “Nest attempt” indicates a nest (present) or random point without nest (absent), “On foredune” (FD) indicates whether
the  nest or random point without nest is on (yes) or off (no) a constructed foredune, “Site fidelity” (SF) indicates whether a nest or random point without nest is within 75 m
(potential) or not (none) of a nest or random point without nest from the preceding year, “Slope (%)” is the average rise over run within a 5 m radius of the nest or random
point  without nest, “Vegetation” is the general type and density of vegetation at the nest or random point without nest.

b Total error is the total number of model predictions that did not match the data. False positives indicate the percent of total error that was  attributed to the model
predicting a nest being present when there was no actual nest observed. False negatives indicate the percent of total error that was attributed to the model predicting no
n
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est  being present when there actually was a nest observed.
c LR difference from full model (%) is the percent difference between the Likeliho

ariable(s) removed.

ercentages of false negatives despite increases in overall errors.
he reduced model trained on all years (that included only the four
ariables of distance to MHW  ocean, elevation, slope, and vegeta-
ion) had an error of 26%, with most of that error (73%) attributable
o false positives (Table 3).

.3. Model applications

.3.1. Constructed foredune hypothesis
We hypothesized that including nests on the foredune would

ncrease model uncertainty because the constructed foredune was
n anomalous nesting area for piping plovers due to the fact that
t is an elevated feature. The average elevation of nests on the con-
tructed foredune in 1999, 2002, and 2008 was higher (1.8 ± 0.2 m;
ean ± SE) than the average elevation of nests in the rest of the

tudy area (1.0 ± 0.4 m)  in those years. The percentage of total
rea on and around the foredune (defined as the area east and
est of the foredune, and including the foredune itself) that was

omposed of sparsely vegetated habitat was 87% in 1999; as vege-
ation encroached the area, the extent of sparsely vegetated habitat
hen decreased to 64% in 2002, and to 43% in 2008. By contrast,

he percentage of total area off and away from the foredune that
as composed of sparsely vegetated habitat was 45% in 1999, it
ecreased to 37% in 2002, but then increased slightly to 38% in
008. The percentage of total nests in our study area that were
tio (LR) of the full model with all variables included and the LR of the model with

located on the foredune increased from 1998 (5%) to 2002 (19%)
and again dramatically in 2008 (47%). When we included only the
nest and random points that were off the foredune in our BN trained
with the 2008 data, we found 0% error in comparison to the model
that included all nest and random points which had an error of 3%
(see D2008 P2008, Table 2). Conversely, when we included only
the points on the foredune, we  found a much higher error (10%)
compared to the model that included all of our data points (see
D2008 P2008, Table 2).

3.3.2. Shifting distributions hypothesis
We hypothesized that we  could use our BN to illustrate that

shifting distributions of plover nests were related to certain habi-
tat changes that occurred from 1999 to 2008. We  found that the
ranges of conditions favorable versus unfavorable for nesting dif-
fered more in 2008 than in 2002 and 1999 (Table 4). The ranges
of conditions for just one variable (site fidelity) were different for
the most favorable (80% probability of a nest being present) and
unfavorable (75% probability of a nest being absent) nesting condi-
tions in 1999 (Table 4). In 2002, the ranges of conditions for all but
three variables (distance to dune crest, distance to mean high water

ocean, and on foredune) were different for the most favorable (86%
probability of a nest being present) and unfavorable (80% proba-
bility of a nest being absent) nesting conditions (Table 4). Finally,
in 2008 ranges of conditions for all variables, except slope, were
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Table  4
Environmental conditions favorable and unfavorable for piping plover (Charadrius melodus) nesting, derived from our Bayesian network developed using three years of data
from  Assateague Island National Seashore, MD,  USA.

Variablea 1999 2002 2008

Favorableb Unfavorable Favorable Unfavorable Favorable Unfavorable

Beach width (m)  50–100 50–100 50–100 0–50 100–150 0–50
Distance to dune crest (m) 200–400 200–400 200–400 200–400 0–100 200–400
Distance to dune toe (m)  200–400 200–400 n/a n/a 0–100 200–400
Distance to MHW  bay (m)  0–100 0–100 100–200 0–100 300–400 0–100
Distance to MLW  bay (m)  n/a n/a n/a n/a 300–400 0–100
Distance to MHW  ocean (m)  300–1000 300–1000 300–1000 300–1000 100–150 300–1000
Distance to MOSH (m)  n/a n/a n/a n/a 150–225 0–75
Elevation (m) −0.5 to 0.5 −0.5–0.5 0.5–1.5 −0.5–0.5 1.5–2.5 −0.5–0.5
Nest  site fidelity Yes No Yes No Yes No
On  foredune No No No No Yes No
Slope  (%) 0–2.5 0–2.5 0–2.5 2.5–5.0 2.5–5.0 2.5–5.0
Vegetationc Sparse Sparse Shell bed Herbaceous Sparse Herbaceous

a “Beach width (m)” is the horizontal distance between the dune-toe boundary and the mean low water (MLW) line, “Distance to dune crest (m)” is the perpendicular
distance from the dune high boundary to the nest or random point without nest, “Distance to dune toe (m)” is the perpendicular distance from the dune low boundary to the
nest  or random point without nest, “Distance to MHW  bay (m)” is the perpendicular distance from the mean high water bay boundary to the nest or random point without
nest,  “Distance to MHW ocean (m)” is the perpendicular distance from the mean high water ocean boundary to the nest or random point without nest, “Distance to MLW
bay  (m)” is the perpendicular distance from the mean low water bay boundary to the nest or random point without nest, “Distance to MOSH (m)” is the closest distance
from  a moist substrate area to the nest or random point without nest, “Elevation (m)” is the vertical height above sea-level of the nest or random point without nest, “Nest
attempt” indicates a nest (present) or random point without nest (absent), “On foredune” indicates whether the nest or random point without nest is on (yes) or off (no) a
constructed foredune, “Site fidelity” indicates whether a nest or random point without nest is within 75 m (potential) or not (none) of a nest or random point without nest
from  the preceding year, “Slope (%)” is the average rise over run within a 5 m radius of the nest or random point without nest, “Vegetation” is the general type and density
of  vegetation at the nest or random point without nest.
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b “Favorable” corresponds to a nest presence probability of 80% in 1999, 86% in 2
999,  80% in 2002, and 75% in 2008.
c “Shell bed” is a type of sparsely vegetated habitat present only in 2002, resulting

ifferent for the most favorable (80% probability of a nest being
resent) and unfavorable (75% probability of a nest being absent)
esting conditions (Table 4).

As the physical habitat became more variable between 1999 and
008, our BN captured the connection between the shift in distri-
ution of nests that we visually observed and this habitat change
s we found that the highest probability of nest presence in 2008
orresponded to habitat that was more sloped (2.5–5.0% in 2008
s. 0–2.5% in 1999 and 2002), higher in elevation (1.5–2.5 m in
008 vs. −0.5 to 1.5 m in 1999 and 2002), on wider beach widths
100–150 m in 2008 vs. 50–100 m in 1999 and 2002), closer to
he ocean (100–150 m in 2008 vs. 300–1000 m in 1999 and 2002),
loser to the dune lines (0–100 m in 2008 vs. 200–400 m in 1999 and
008), and farther away from the bayside high tide line (300–400 m

n 2008 vs. 0–100 m in 1999 and 100–200 m in 2002) as compared
o 1999 and 2002 (Table 4).

. Discussion

Using a Bayesian network constructed with expert knowledge
rom peer-reviewed literature and trained with historical data, we
ere able to accurately predict nest presence on ASIS for a his-

orical dataset of nest locations from 1999, 2002, and 2008. Our
ndings demonstrate that piping plover nest presence can be pre-
icted using a Bayesian network that is primarily based on physical
eatures of barrier island habitats.

Our BN illustrated, as expected based on past field work (e.g.,
ohen et al., 2009), that in the post-storm environment of 1999,
he ranges of physical conditions were very similar for favorable
nd unfavorable nesting conditions on the North End of ASIS. Field
tudies have repeatedly shown that piping plovers typically nest on
at, low-lying beaches with clumped sparse vegetation near MOSH,
s is often found in areas of storm-created overwash (Cohen, 2005;
ohen et al., 2008, 2009; Fraser et al., 2005; Houghton, 2005). The

998 storms created these conditions across much of the North
nd. Our model based on 1999 nesting data performed poorly in
istinguishing between nest sites and random sites without nests

n 1999, likely because the habitat was uniformly of high quality
nd 80% in 2008. “Unfavorable” corresponds to a nest absence probability of 75% in

 severe storms in 2001 that deposited large amounts of shell in plover nesting areas.

for piping plovers. We  saw this lack of poor quality nesting habitat
in 1999 reflected in the details of the error. Specifically, we found
that our overall error was composed of a much higher percentage of
false positives (a nest predicted to be present when it was  absent in
the data) than false negatives (a nest predicted to be absent when
it was present in the data) which we would expect if the majority
of the habitat is suitable for nesting yet demographic factors such
as population size and inter- and intra-specific competition pre-
vent plovers from occupying every available, suitable nesting site.
Detailed examination of the explanatory variable ranges for the
false positives revealed no single explanatory variable was a likely
driver of false positives. Considering that the priority of this model
is to accurately predict nest presence, and given that demographic
factors likely prevent piping plovers from occupying every poten-
tial nest site, we  would be concerned about our model’s ability to
accurately predict nest presence if there were many false nega-
tives because this result would indicate that the model is not able
to recognize physical conditions that are most suitable for plover
nesting. For all our models that did not distinguish well between
nests and random sites, the majority of the error was due to false
positives, even for those models with much higher error rates than
our best performing model. For those cases where the model out-
put was a false negative, we  discovered that the model prediction
itself was near equivocal. For example, for the D2008 P2008 model,
there were two  false negatives, where the model predicted a nest
to be absent when it actually was present in the data. For both of
those cases, the model predicted probability of nest absence was
0.6.

The shifting distribution of nests from 1999 to 2008 (see Fig. 2)
suggests that the physical changes in beach morphology and vege-
tation, due to both the construction of the foredune (Schupp et al.,
2013) and related lack of storm-related overwash, led the North
End of ASIS to transition from more physically uniform habitats
in 1999 to a more varied habitat in 2008. As vegetation structure

shifted from predominantly sparse to more herbaceous and shrub
communities near preferred foraging areas of bayside MOSH, pip-
ing plover nest locations moved toward the ocean-side of the North
End. Our model performed better at predicting both nest presence
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nd nest absence under the more varied habitat conditions in 2002
nd best in 2008 (with an error of only 3%) when there was a more
ven proportion of suitable and unsuitable habitat than in 1999.
he few misclassifications in our best-performing model of 2008
esting conditions were spread equally among false positives and

alse negatives, suggesting that the model was able to learn which
hysical conditions presented both unfavorable and favorable nes-
ing habitat when the habitat was highly varied. From discussions
ith wildlife managers on the issue of predicting sea-level rise and
uman development effects to shorebird nesting habitat, we  expect
hat future applications of this model will be at a much coarser
patial scale (i.e., 1 km2) than was used in this initial model develop-
ent (i.e. points of nests or random points with an error of 1–5 m).
e  expect that as spatial scale increases, habitat heterogeneity will

ncrease as well and our current model will do well at predicting
uture piping plover locations in a heterogeneous barrier island
nvironment.

We think that differences in morphological conditions present
n 1999, 2002, and 2008 negatively affected the model’s cross-year
redictive capability. The transition in physical island features from
999 to 2002–2008 resulted in poor predictive capabilities when

 model based on one year of data was used to predict nest and
andom points of another year alone. However, when the model
as based on all three years of available data, nest and random
oint predictions were more accurate for 2002 alone, 2008 alone,
r for all three years combined than when based on a single differ-
nt year. Further, we found little similarity in model sensitivity to
ingle explanatory variables for each year, indicating that habitat
ifferences among 1999, 2002, and 2008 were pronounced enough
o result in different posterior probability distributions for the vari-
bles in each year’s model. In applications of this model to predict
uture probabilities of piping plover nest presence on the North
nd of ASIS or at other sites, the use of all three years of data in the
odel are preferred, as it is not possible a priori to know whether

uture habitat conditions will most closely resemble the uniformly
igh quality habitats of 1999 or varied habitats of 2008. Using all
hree years of habitat data allows future predictions to be based on

 BN parameterized with a fuller range of habitat quality for nes-
ing piping plovers. And, perhaps, the three years that were used
re fully representative of the relevant physical conditions needed
or making good predictions. If additional years of piping plover and
abitat features becomes available, these data can be included in

uture predictions from the BN model trained on as wide of a base
f available data as possible.

In addition, we suggest the use of a BN without the on foredune
nd distance to dune toe variables in future applications, as removal
f these two variables created a simpler model without increasing
rror or decreasing predictive capabilities. The constructed fore-
une was a preferred nesting site even though it was elevated in
eight and far from bayside MOSH. We  discovered the BN that

ncluded only nest and random points that were off the foredune
erformed better than the model that included only the points that
ere on the foredune and the original model with points on and

ff the foredune; these results supported our expectation that at
east some of the error and uncertainty present in our 2008 model

as driven by the foredune constructed on the North End. Fur-
her, we found that the highest probability of nest presence in our
N that was based on 2008 data corresponded to habitat that was
ore sloped, higher in elevation, closer to the ocean, and farther

way from the bayside high tide line as compared to the BN’s based
n 1999 and 2002 data, contrasting with our original predictions
hat plovers would continually nest on low elevation flat bayside

ites that would provide them with the best access to low-energy
OSH. Thus, the BN model was able to predict how physical con-

itions favorable for nesting shifted with the shifting availability of
hysical habitats driven by lack of island overwash and vegetation
delling 276 (2014) 38– 50 49

encroachment related to the constructed foredune. Other studies
have demonstrated that site fidelity exerts a strong influence on
piping plover nest site selection (Cohen et al., 2006), and we  also
found that site fidelity (i.e., proximity to prior year’s nest sites)
was one of the most influential variables in our models (Fig. 5).
We expect that site fidelity alone may  partly explain why  piping
plovers in our study area continued to nest in the same general loca-
tion even after the foredune was  constructed and habitat conditions
changed dramatically.

Including metrics related to the proximity of nests to the bayside
MLW and MHW  tidelines, and MOSH resources, as variables in the
model when data availability permits is desirable, as field studies
have consistently shown the importance of those resources to pip-
ing plover nest site selection (Cohen, 2005; Loegering and Fraser,
1995). However, when data are available for only a small portion of
the 12 variables we  included in the model, we are confident that it
is still able to reliably predict plover nest presence as was  shown in
the low rates of false negatives for our reduced model that included
only the four variables of distance to MHW  ocean, slope, elevation,
and vegetation.

5. Conclusions

This study represents an important step toward predicting
future changes to piping plover nesting habitat related to sea-
level rise and human development. We have presented a modeling
method that predicts the probability of plover nest presence and
absence primarily using physical features and based on a varied
historical dataset that can be adapted to different areas. With this
initial model, we were able to reliably predict the presence of nests
based on a dataset with a wide range of physical conditions using
a Bayesian network that linked physical variables and a metric of
site fidelity to nest and random points, and we were able to iden-
tify how habitat variation affected the model’s performance. Given
the importance of site fidelity found in our model, and the impor-
tant influence of vegetation encroachment on the physical features
selected by nesting piping plovers, opportunities exist to explore
beach management practices that (1) reduce disturbance to nesting
habitats that might prevent plovers from establishing nests at sites
previously used and (2) encourage processes such as overwash that
prevent vegetation encroachment.

This model, based on all three years of data and thus encom-
passing uniform to highly varied physical habitats, may  be used to
predict future probabilities of nest presence under varied scenarios
where the physical environment is altered by human development,
storms and sea-level rise. As a future application, this model could
be coupled to a barrier island geomorphology model to predict how
large scale shoreline change rates caused by sea-level rise will affect
plover nest presence at other locations beyond the North End of
ASIS. If data are incomplete for such a future application of this
model, a simpler model based on 1999, 2002, and 2008 could be
used, with on foredune, distance to dune toe, to MLW bay, and to
MOSH removed. In the absence of lidar elevation data or aerial pho-
tography, then a very simple model trained on the same years, and
including only the following variables: distance to MHW ocean,
elevation, slope, and vegetation, may  be used.
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