Research and Decision Support Framework to Evaluate Sea-Level Rise Impacts for the U.S. Atlantic Coast

Structured Decision Making Workshop Participant Briefing on Progress to Date

February 28, 2013

USGS Sea Level Rise Decision Support Team: Erika Lentz, Nathaniel Plant, Rob Thieler, Aaron Turecek

Outline

- Recap from SDM workshop
- USGS sea level rise project decision support approach
 - Geospatial outputs
 - Dual modeling filter : coarse vs. fine
- Integration with habitat outputs

Optimize the allocation of conservation efforts in a spatially explicit manner in order to sustain ecological values of beaches/tidal marshes across the NALCC in the face of storm impacts and sea level rise

Sustainable Conservation of Ecosystem Services (Carbon + Protection of Human Infrastructure+ Rec Measure)

Ensure Persistence of Native Habitats (Pr Persist Beach Complex + Pr Persist Marsh Complex)

Predictions Vulnerability of Habitat - Sea level rise + Storm Impacts

Universe of Alternatives (Suites of Actions) Type of Action, State of Patch, Location of Patch, Time of Implementation

Acquire New Habitat – Future Buffering (Habitat that could buffer effects, but will need management to transition) Manage New Habitat - Transition (Management to get newly acquired habitat to buffer effects)

Acquire Existing Habitat (Maintain high-quality habitat) Manage Existing - Resiliency (Management to habitat in conservation status to improve resiliency to effects)

Ensure Persistence of Native

Species

(Δ Suitability Spp Beach + Δ Suitability Spp Marsh)

Key is understanding where we will experience:

- 1. Inundation
- 2. Land loss (erosion)
- 3. Landform migration

BEFORE habitat model integration . . .

USGS Decision Support Approach (from http://wh.er.usgs.gov/slr/decisionsupport.html)

Dual Modeling Filter:

Coarse:

- Regional focus on dominant coastal response type (inundation vs. dynamic)
- Single time step
- Morphological/physical process assessments and predictions
- Geospatial mapping and decision support model

Fine:

- Localized iterative approach to evaluate dynamic response to event-driven impacts
- Morphological/physical process assessments and predictions
- Decision support model

Identify SLR response-type (inundation vs. dynamic)

Elevation data trimmed by 95% confidence interval on DEM (≥ 5% or greater chance of flooding)

Elevation data trimmed by 68% (green) and 95% (red) confidence interval on DEM (≥ 32% or ≥ 5% greater chance of flooding, respectively)

Status of NOAA's Coastal Change Analysis Program (C-CAP) 2011 Land Cover Update

Source: http://www.csc.noaa.gov/digitalcoast/_/img/maps/ccap_2011_status_20130122.png

Identify SLR response-type (inundation vs. dynamic)

Coastal Change Analysis Program (C-CAP) Regional Land Cover Data

Resolution: 30 m pixels Accuracy: 85% target accuracy

Land Cover Classification Scheme

Identify SLR response-type (inundation vs. dynamic)

C-CAP data subdivided into three classes:

Identify SLR response-type (inundation vs. dynamic)

Elevation + Land Cover = land cover response sub-classes at 95% confidence interval

CSC Coarse Filter Approach

Identify SLR response-type (inundation vs. dynamic)

National Assessment of Shoreline Change Transects

Modeling Investigation: COARSE

Decision Support Model (in progress)

Fine Filter: Storm/species vulnerability scale

Objectives:

- Evaluate dynamic response type to event-driven parameters (time-steps)
- Determine where:
 - Erosion becomes limiting over SLR
 - Development hinders dynamic response (inundation)
- Make model iterative

Model Components

Decision Support Integration

Modeling/mapping provides opportunity to link with:

- Habitat quality information (UMASS-DSL)
- Species response (i.e. piping plover habitat)
- Human response (i.e. development of social dynamics/response)

The Approach LCAD model

From K. McGarigal DSL Workshop 10/2012

The Approach

From K. McGarigal DSL Workshop 10/2012

Landscape Assessment

Coarse filter

Our coarse filter is based on the concept of *ecological integrity* applied to the suite of *ecological systems*

High Integrity

Low Integrity

 Ecological integrity refers to the capability of an area to sustain ecological functions over the long term, especially in the face of disturbance and stress

From K. McGarigal DSL Workshop 10/2012

The Approach

Landscape Assessment *Fine filter*

Our fine filter is based on the concept of *climate & habitat* capability applied to a suite of representative species

 Habitat capability refers to the ability of the environment to provide the local resources (e.g., food and cover) needed for survival and reproduction in sufficient <u>quantity</u>, <u>quality</u> and <u>accessibility</u> to meet the life history requirements of individuals and local populations

Optimize the allocation of conservation efforts in a spatially explicit manner in order to sustain ecological values of beaches/tidal marshes across the NALCC in the face of storm impacts and sea level rise

Sustainable Conservation of Ecosystem Services (Carbon + Protection of Human Infrastructure+ Rec Measure)

Ensure Persistence of Native Habitats (Pr Persist Beach Complex + Pr Persist Marsh Complex)

Predictions Vulnerability of Habitat - Sea level rise + Storm Impacts

Universe of Alternatives (Suites of Actions) Type of Action, State of Patch, Location of Patch, Time of Implementation

Acquire New Habitat – Future Buffering (Habitat that could buffer effects, but will need management to transition) Manage New Habitat - Transition (Management to get newly acquired habitat to buffer effects)

Acquire Existing Habitat (Maintain high-quality habitat) Manage Existing - Resiliency (Management to habitat in conservation status to improve resiliency to effects)

Ensure Persistence of Native

Species

(Δ Suitability Spp Beach + Δ Suitability Spp Marsh)