An evidence-based approach to developing environmental flow needs for Great Lakes tributaries in New York

J.M. Taylor ${ }^{1,2}$ and W.L. Fisher ${ }^{1,2,3}$

${ }^{1}$ Dept. of Natural Resources, Cornell University ${ }^{2}$ NY Fish and Wildlife Cooperative Research Unit ${ }^{3}$ U.S.Geological Survey

- Need:
- Meet obligations of the GREAT LAKES COMPACT
- Inform development of NYSDEC FLOW POLICY
- Objective: develop sciencebased flow recommendations based on existing information that are useful to water managers.

Environmental Flows

The flow of water in a natural river or lake that sustains healthy ecosystems AND the goods and services that humans derive from them.

Headwater/Creek, cool, low to moderate gradient: (36 sq. mi.)

FLOW-ECOLOGY HYPOTHESES describe who (species or guild) is affected by what (flow component), when (month or season), where (habitat), and how (hypothesized ecological response).

During the spring and early summer,

 a decrease in median flow will limit recruitment of riffle associate fishes by decreasing the amount of riffle habitat and spawning area available.

Forty (40) FLOW-ECOLOGY HYPOTHESES describe who (species or guild) is affected by what (flow component), when (month or season), where (habitat), and how (hypothesized ecological response).

EXAMPLE FISH HYPOTHESES

H1 During the spring, a decrease in the magnitude and/or duration of the peak flow event will extend the timing of riffle associate and anadromous sportfish (rainbow) spawning runs, reduce access to spawning habitats, and expose migrating fish to increased predation.

H2 During the spring (March-mid-May, riffle associates and spring spawning salmonids require high flows at the correct temperature to cue spawning migrations. A change in timing of the peak flow event will disrupt spawning cues, restrict access to suitable spawning habitat, and lower recruitment.

H2 During the spring and early summer, a decrease in median flow will decrease the amount of riffle habitat and spawning area_available and limit recruitment of riffle associate fishes. affected by what (flow component), when (month or season), where (habitat), and how (hypothesized ecological response).

Hypotheses are consolidated into FLOW NEEDS (11)

EXAMPLE FLOW NEED FOR FISH

- Cue spawning migration and maintain access to suitable spawning and nursery habitats

Support for Flow Needs is assessed through Weight-of-Evidence from the literature.

Hypotheses were consolidated into 11 Flow Needs

Flow Components and Needs

SEARCH STRING EXAMPLES

(fall* or autumn* or september or october or november)
(winter* or spring* or november or december or january or february or march or april* or may* or june* or ice*)
(spring* or march or april* or may* or june*)
(sumr

105 Different Search Strings

Flow-Ecology Hypotheses are consolidated into Flow Needs and literature support is assessed through Causal Criteria Analysis.

Freshwater Science (JNABS), 2012, 31(1): 5-21

Study design	Weight
BACI	4
Gradient response model	3
Before vs. after (no reference/control)	$\mathbf{2}$
Reference/control vs. impact (no before)	$\mathbf{2}$
After impact only or Observational data	$\mathbf{1}$

Flow-Ecology Hypotheses are consolidated into Flow Needs and literature support is assessed through Causal Criteria Analysis.

Flow Need: Cue spawning migration and maintain access to spawning habitat during the spring

	Summed evidence weights	
Hypotheses	Evidence	Not consistent
GL-F11	15	0
GL-F13	48	9
GL-F15a	57	1
Total	120	10

Winter Flow Components

Going from Flow Needs to Recommendations

Going from Flow Needs to Recommendations

Going from Flow Needs to Recommendations

Expert Elicitation (Dec 2012)

Change to the median (Seasonal Flow)

```
10% change reduced brook trout relative abundance by 33%
10% change reduced fluvial fish relative abundance by 9%
5-25% change reduced benthic invertivores by 15%
20% change reduced fluvial fish relative abundance by 17%
```


Low Flow Impacts

Q_{77} Loss of riffle habitat
Q_{80} Reduced riffle and pool habitat, brook trout population size and
body condition, increased competition among riffle obligates
Q_{85} Dewatered margin habitats exposed mussels

Technical Review
Draft Recommendations
Final Recommendations

Take Home Points

1. We utilized regional expert knowledge to develop ecosystem flow needs.
2. We synthesized existing information in a transparent format using the weight of evidence approach to support flow needs.
3. We are using this information combined with expert input to develop recommendations in support of NY State Flow Policy.

ACKNOWLEGEMENTS:

Funding provided by The Nature Conservancy and a Regional Conservation Needs Grant from the Northeast Association of Fish and Wildlife Agencies

Project support provided by The Nature Conservancy
(D. Klein, G. Schuler, C. Apse, E. Kendy, T. Moberg)

Staff from NY DEC, USGS, USFWS, USEPA, and multiple universities continue to contribute time and effort to this project.

