Ben Letcher, Yoichiro Kanno, Ana Rosner, Kyle O'Neil, Dan Hocking

Conte Anadromous Fish Research Center, U.S. Geological Survey, Turners Falls, MA

Project goal

- → Link environmental variation to fish population response
 - Stream temperature
 - Stream flow
 - Local conditions (land use, etc.)
- Challenge: incomplete data in space and time
 - Space
 - Many missing catchments
 - Time
 - Seasons within a year
 - Years
- → Solution: broad spatial models
 - Estimate unsampled locations, times
 - Fish, stream temperature, flow

Temperature effects across space

- → Fish data
 - Presence/absence
- → Environmental covariates
 - Summer stream temperature max
 - Stream temperature sensitivity
 - Annual stream flow
 - Soil drainage class
 - Drainage area
 - Forest cover
 - Stream slope
- Occupancy model
 - Presence/absence ~ (env covariates)
 - Probability of occupancy

Daily stream temperature model

- → Air temperature / water temperature synchronization and breakpoint model
 - Model daily water temperatures during times of year that water and air temperature are synchronized

When are stream and air temperature synchronized?

When are stream and air temperature synchronized?

-10

Day of year

100

300

20

Air temperature (°C)

0

-10

Day of year

100

300

20

Air temperature (°C)

0

-10

Stream temperature model

- → Stream temperature / air temperature synchronization and breakpoint model
 - Simple linear models for the rising and falling <u>segments</u>
 - Dependent variable
 - Mean daily stream temperature
 - Independent variables
 - Mean daily air temperature
 - Lagged mean daily air temperature
 - Day length, snow-water equivalent, solar radiation, precipitation (running mean)
 - Landcover
 - Drainage area, % upstream impounded
 - Topography
 - Geology
 - Latitude, longitude

Observed vs. predicted stream temperature

RMSE = 1.0 °C, model $r^2 = 0.96$ Validation RMSE = 1.1 °C

Predicted temperature parameters

Summer maximum stream temperature

Stream temperature sensitivity

Model estimates

- Presence / absence
 - Occupancy models
 - Stream temperature sensitivity
 - Summer stream temperature max
 - Annual stream flow
 - Soil drainage class
 - Drainage area
 - Forest cover
 - Stream slope

Predicted occupancy

Predicted occupancy, 2° C increase

Fix temperature, how does occ vary?

Predicted occupancy, 4° C increase

Fix temperature, how does occ vary?

Predicted occupancy, 6° C increase

Fix temperature, how does occ vary?

Current Climate
Temperature Increase 2 degrees
Temperature Increase 4 degrees
Temperature Increase 6 degrees

Predicted occupancy, GCM (2080 high emission scenario)

Fix climate, how does occ vary?

Predicted occupancy, Temperature tolerance

Fix occ, how does temperature tolerance vary?

Summary

- Daily synchronization / breakpoint temperature model seems effective
 - Many useful derived parameters, low RMSE
- → Using temperature model to link climate to occupancy takes full advantage of temperature and fish data
 - 2 °C increase in air temperature ~
 0.07 decrease in p(occ)
- → These simple statistical models are easy to update with new data
- → Forecasting ability will improve with more data (space, time)
- → Approach not limited to brook trout, or single species

