Primer for Identifying Cold-Water Refuges to Protect and Restore Thermal Diversity in Riverine Landscapes

Christian Torgersen U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, School of Environmental and Forest Sciences, University of Washington, Seattle, USA

Joe Ebersole U.S. Environmental Protection Agency, Western Ecology Division, Corvallis, Oregon, USA

Dru Keenan U.S. Environmental Protection Agency, Office of Water and Watershed, Seattle, Washington, USA

Thalweg 27°C

Cool tributary 26°C

Subsurface inputs 25°C

Rainbow trout (Oncorhynchus mykiss)

Water temperature 25°C

Thermal Diversity in Riverine Landscapes

Growth and survival of trout and salmon are higher in pristine "cold" streams when fish can move between relatively cold and warm patches (4-18°C).

Alaska

(Armstrong et al. 2010, Ruff et al. 2011)

Management and policy

"Critical aspects of the natural thermal regime that should be protected and restored include the <u>spatial extent of cold-water</u> <u>refugia (generally defined as waters that are 2°C colder than the</u> <u>surrounding water</u>), the diurnal temperature variation, the seasonal temperature variation (i.e., number of days at or near the maximum temperature), and shifts in the annual temperature pattern." EPA

"<u>Cold-Water Refugia means those portions of a water body</u> where or times during the diel temperature cycle when the water temperature is at least 2°C colder than the daily maximum temperature of the adjacent well-mixed flow of the water body." ORDEQ EPA 910-C-12-001

Part I.

- •What are CWRs and why are they important?
- Road map for addressing water quality standards
- •Application to EPA guidance on migration corridors

	United States	Region 10	Alaska Idaho
	Environmental Protection	1200 Sixth Ave.	Oregon
	Agency	Seattle, WA 98101	Washington
	Water Division	Office of Water and Watersheds	February 2012
		사람이 있는 것이 아니는 것이 아니는 것이 가지 않는 것이 같이 다 있는 것이 아니는 것이 같이 않는 것이다.	

EPA

Primer for Identifying Cold-Water Refuges to Protect and Restore Thermal Diversity in Riverine Landscapes

90 pp.

Part II.

- Classification and characterization
 - Hierarchical organization
- Identification and prediction
- Protection and restoration

Part III.

- Figures (38)
- References (251)
- Appendices:
 - Video from WDAFS symposium
 - List of rivers and streams surveyed with FLIR (1994-2007)

Behavioral thermoregulation

Adult chinook salmon (Oncorhynchus tshawytscha)

Potential tradeoffs

Predation

Isolation

Classification and characterization

Identification and prediction

Data loggers and modeling

Distributed temperature sensing (DTS)

(O'Donnell 2012)

Water temperature (C)

Restoration

Channel unit and microhabitat-scale restoration of cool-water areas

Challenges and research needs

- What is a thermal refuge?
 - Provide scientific guidance for policy definitions
- Temperature is not the only factor
 - Differentiate between thermal anomalies versus refuges based on their **biological effectiveness**
- Shifting mosaic of thermal landscapes
 - Consider the full range of complexity in <u>space</u>
 <u>and time</u>
 - Address protection and restoration needs at multiple scales (e.g., microhabitats to the "<u>Big Cold</u>")

Primer for Identifying Cold-Water Refuges to Protect and Restore Thermal Diversity in Riverine Landscapes

Website on EPA Region 10 Water Temperature Guidance: www.epa.gov/r10earth/temperature.htm

Download report: http://www.epa.gov/region10/pdf/water/torgersen_etal_2012_cold_water_refuges.pdf

Contact information:

Christian Torgersen, USGS, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, School of Environmental and Forest Sciences, University of Washington, Seattle, WA <u>ctorgersen@usgs.gov</u>

Joe Ebersole, EPA, Western Ecology Division, Corvallis, OR <u>ebersole.joe@epa.gov</u>

Dru Keenan, EPA, Office of Water and Watershed, Seattle, WA keenan.dru@epa.gov