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Concepts in SW-GW

Are streams and groundwaters connected?

Temperature in the subsurface
(a non-conservative tracer)

Typical assumptions about groundwater
temperature

...are all false!
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Figure B-3: Groundwater System Involving the Hyporheic Zones (Alley et. al 2002)
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Streams and Groundwater
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“Streams interact with ground water
in three basic ways:

* streams gain water from inflow of
ground water through the streambed
(gaining stream),

* they lose water to ground water by
outflow through the streambed
(losing stream), or

* they do both, gaining in some
reaches and losing in other reaches”

(USGS Circ.1139)
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Using Temperature to Study Stream-Ground Water Exchanges
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Ecohydrology: Thermal Refugia (Cool GW

Warm, sunny reach




Figure 1. (a) Salinas Valley
Watershed, arrow indicates
Horse Creek. (b) CA locator
map. (c) Arroyo Seco
precipitation model. Arrows
mark DTS reach on Horse Cr.
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end of surface flow 4—.‘!?

.. Figure 2. Plan view of the Horse Creek
. study site (36.249 °N, 121.412 °W).
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l Figure 7. (a) [STEP 3-6] (a) <&- - l

Mean temperatures of %f ’f ’

segment groups and (b) 55 | ~ 4 \ } )
least-dependent com- 853- = \ S \J A\ <

ponents (LDCs) for DTS
time series data divided into
six groups. Colors are the
same as in Figure 4. (b)
Least-dependent com-
ponents from the MILCA
algorithm [Stogbauer et al.,
2004] are scaled to sum to
the mean temperature series
and sorted by amplitude.
Broad colored lines are air T
(°C, @LDC 1) and insolation

(W/m2, @LDC 3), res- LDC 6
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Fire in Big Sur Wilderness
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Assumptions about groundwater

* Surface and groundwaters are connected
everywhere

Bedrock

Stone et al., 1992 P ::::ﬂw e _
* Groundwater temperatures track air
temperatures

* Groundwater temperature is approximately
equal to mean annual temperature



Ground water temperatures are variable
in time (or space)
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Ground water temperature can deviate significantly
from a purely conductive state (via advection)
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What we know about groundwater

Groundwater temperatures are variable in time (or
space)

Groundwater temperature can deviate significantly
from a purely conductive state (via advection)

Groundwater temperatures are not equal to mean
annual temperature

Groundwater temperatures do not necessarily track
air temperatures

The paradox of cooling streams in a warming world: Regional climate
trends do not parallel variable local trends in stream temperature
in the Pacific continental United States
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