GREAT MARSH
RESILIENCY
MODELING
WORKSHOP

Preparing for Sea Level Rise and Climate Change at a Community and Individual Asset Scale

Kirk F. Bosma, P.E. kbosma@woodsholegroup.com

Outline

- 1. MassDOT / FHWA Pilot Study
- 2. Example Applications of Results
- 3. Essex County Phase I NWF Mapping
- 4. MA CZM SLAMM Modeling Effort
- 5. MassDOT Model Extension

Project Overview

The **Central Artery** is a critical link in regional transportation and a vitally

important asset in the Boston metropolitan area.

1. What is the probability of flooding?

- 2. What is vulnerable and what is the priority?
- 3. What interventions are available and what is the plan?

Project Team:

Kirk Bosma, Woods Hole Group, Inc. Ellen Douglas, Paul Kirshen, and Chris Watson, UMass Boston Steven Miller and Katherin McArthur, MassDOT

Probability of flooding options

FEMA Maps

- FEMA is only backward looking
- Only considers "100-year" storm
- Transect based analysis

Bathtub Approach

- Inundation maps do not reflect dynamic nature of coastal flooding
- Does not account for joint flooding conditions
- Does not account for tides

Hurricane Evacuation Maps

- Worst possible scenario for emergency planning (worst storm at MHW)...no associated risk planning
- Coarse modeling domain results in local inaccuracies
- Does not include impacts of waves
- Just hurricanes

Why existing maps were not good enough

Hi-Res Hydrodynamic Modeling

 Includes relevant physical processes (tides, storm surge, wind, waves, wave setup, river discharge, sea level rise, future climate scenarios)

- Currents
- Storm Surge
- Tides
- Water Levels
- Winds
- SLR
- Discharge
- Infrastructure

Tightly Coupled

- Waves
- Wave Setup

Regional Grid Requirements

Grid covers a large regional area (North Atlantic) to capture large-scale storm (hurricane, nor'easter) dynamics.

Unstructured Grid

Boston Grid

Focus Areas

Using Projections to Bracket Risk

Storm Climatology - Hurricanes

- Monte Carlo simulations, using a large statistically robust set of storms (Emanuel, et al., 2006) and a physics based approach
- Present and future climate change scenarios

 Simulates storms (both hurricane and nor'easter) combined with SLR and precipitation

Model Calibration - Blizzard of '78

Model Validation - Perfect Storm

Example Results - Winds

Example Results - Hurricane

Exceedance Probability Maps

Depth of Inundation Maps

Changing Climatology

Example Assessment

Example Assessment

Flood Pathways

MassDOT/FHWA Climate Adaptation Pilot BH-FRM Flood Pathway Analysis

2013 Regional and Local Flood Pathways

Callahan Tunnel East Boston, MA

CA/T System

Local Community Assessment

Great Marsh Panel Wetlands Change Summary

Hein et al., 2012 (Marine Geology)

Summary

https://www.massdot.state.ma.us/highway/Departments/EnvironmentalServices/EMSSustainabilityUnit/Sustainability.aspx

- 1. This model approach provides highresolution flooding results for projected climate change scenarios.
- 2. Peer-reviewed by WHOI, USGS, NOAA, USACE, and USEPA.
- 3. Includes relevant processes, storm types, and joint probabilities.
- 4. Provides realistic probability based results that can be more effectively used to assess vulnerabilities and provide planning prioritization.
- 5. The model can be used to test various adaptation and engineering options, connected to ecological, piped infrastructure, and economic models.
- 6. The model is currently being extended to the entire coastline of Massachusetts, with time varying topography.

