Indices of Tidal Marsh Integrity and Resiliency:

Marsh indices and optimizing tidal marsh conservation value

Greg Shriver, Whitney Wiest

Hurricane Sandy Tidal Marsh Resiliency Coordination Workshop USFWS Northeast Regional Office Hadley, Massachusetts December 8-9, 2014

Identification of Metrics to Monitor Salt Marsh Integrity on National Wildlife Refuges In Relation to Conservation and Management Objectives

28 metrics total

Landscape = 10 metrics

science

Hydrologic / abiotic = 4 metrics

Vegetation = 9 metrics

Nekton = 3 metrics

Breeding birds = 2 metrics

Metric	Definition
Historical condition and geomorphic setti	ing
Landscape position	Landscape position: marine, middle-estuary, or upper-estuary
Shape	Marsh shape: expansive meadow or narrow fringing marsh
Fill fragmentation	Degree of fill/fragmentation: no, low, moderate, or severe
Tidal flushing	Degree of tidal flushing: well flushed, moderately flushed, or poorly flushed
Aquatic edge	Degree of aquatic edge: low, moderate, or high amount
Ditch density	
Ditch density	Ordinal ranking of ditch density: no, low, moderate, or severe
Surrounding land-use	
Ag relative	% agricultural land in 150 m buffer * (area of buffer/area of unit)
Natural 150m relative	% natural land in 150 m buffer * (area of buffer/area of unit)
Natural 1km relative	% natural land in 1 km buffer * (area of buffer/area of unit)
Ratio of open water area : vegetation are	28
OW Veg withinUnit	Ratio of open water to emergent herbaceous wetlands within unit
Marsh surface elevation	
Elevation	Elevation referenced to NAVD88
Tidal range/groundwater level	
% flooded	% of time marsh surface was flooded during datalogger deployment
Mean Flood Depth	Mean Flood Depth (cm) during datalogger deployment
Salinity	
Rapid Salinity (surface water)	Salinity measured in surface water
Vegetation community	
Rapid Veg SpRich	Vegetation species richness using rapid point-intercept method in survey plots
Brack Terr Border	% cover of Brackish Terrestrial Border community (rapid survey plot method)
Open Water	% cover of Open Water (rapid survey plot method)
Pannes Pools Creeks	% cover of Pannes, Pools, & Creeks (rapid survey plot method)
High Marsh	% cover of High Marsh community (rapid survey plot method)
Low Marsh	% cover of Low Marsh community (rapid survey plot method) % cover of Salt Marsh Terrestrial Border community (rapid survey plot
Salt Marsh Terr Border	method)
Upland	% cover of Upland community (rapid survey plot method)
Invasive species abundance	
Invasives	% cover of Invasive Plant Species (rapid survey plot method)
Nekton community	
Nekton Density	Nekton density (ind m ⁻²) using throw traps and ditch nets
Nekton SpRich	Nekton species richness using throw traps and ditch nets
Fundulus Length	Fundulus heteroclitus length (mm) captured in throw traps and ditch nets
Breeding bird community	
Willet Abundance	Abundance of Willets counted per point during standard call-broadcast surveys
TMO Abundance	call-broadcast surveys: Clapper Rail, Willet, Saltmarsh Sparrow, Seaside Sparrow

Bird Community Integrity

DeLuca et al., MARSH BIRD COMMUNITY INTEGRITY

Table 2. Bird species attributes (Poole and Gill 1999) and scoring criteria used to develop Index of Marsh Bird Community Integrity (IMBCI) scores.

		Score						
	Generalist							
Species attributes	1	2	2.5	3	4			
Foraging habitat Nesting substrate Migratory status Breeding range	ging habitat habitat generalist ng substrate non-marsh nesters atory status resident ling range North America North Am east of Mts.		marsh facultative marsh vegetation short distance/temperate	coastal North America	marsh obligate marsh ground nester Neotropical North America—east coast only			

$$W_{IMBCI} = \left[\left(\sum S_{IMBCI} / S_N \right) + MO_N \right]$$

 W_{IMBCI} = wetland bird community integrity score S_{IMBCI} = Ind. Species scores S_{N} = number species detected in the unit MO_{N} = number of marsh obligate species detected in the unit

DeLuca, W. V., C. E. Studds, L. L. Rockwood, and P. P. Marra. 2004. Influence of land use on the integrity of marsh bird communities of the Chesapeake Bay, USA. Wetlands 24:837–847.

рага янајузез ани керогинк									
Species	Scientific Name	Foraging habitat	Nesting substrate	Migratory status	Breeding range	Sbci score			
American Kestrel	(Falco sparverius)	1	1	2.5	1	5.5			
Northern Bobwhite	(Colinus virginianus)	1	1	1	1.5	4.5			
Clapper Rail*	(Rallus longirostris)	4	4	1	3	12			
Virginia Rail	(Rallus limicola)	4	4	2.5	1	11.5			
Sora	(Porzana carolina)	4	4	4	1	13			
Black Rail	(Laterallus jamaicensis)	4	4	2.5	1	11.5			

Cumulative Distribution Functions

13	The treatment of missing data in long-term monitoring programs	298
	Douglas H. Johnson and Michael B. Soma	
	-	
14	Survey analysis in natural resource monitoring programs with a focus on	
	cumulative distribution functions	313
	Thomas M. Kincaid and Anthony R. Olsen	

Bombay Hook NWR - Bird Community Integrity

nwr - BMH: BCI

unit - SMU-7_Steamboat: BCI

unit - SMU-9_AirForce: BCI

Optimizing Tidal Marsh Conservation Value

Case Study: Kent and Sussex Counties, Delaware

County	Unprotected marsh (ha)	Unprotected parcels
Kent	2,587	947
Sussex	3,542	2,318
Total	6,129	3,265
Total	6,129	3,265

Wiest, W. A., W. G. Shriver, and K. D. Messer. 2014. Incorporating climate change with conservation planning: a case study for tidal marsh bird conservation in Delaware, USA. Journal of Conservation Planning 10:25–42.

Maximizing our Conservation Benefit

How do we achieve the "biggest conservation bang for the buck" ?

parcel bird abundance + parcel easement value

Benefit Targeting

- 1. Parcels listed in descending order of benefit value
- 2. The parcel with the highest benefit score (i.e., highest bird abundance) is acquired first, and the process continues until the budget is exhausted.

Optimization - Binary linear programming optimization model (Solver)

- 1. Evaluates the conservation benefits and costs of the entire parcel pool.
- 2. Selects parcels that contribute to achieving the maximum total conservation benefit possible within the apportioned budget.

OBJECTIVE: maximize bird abundance within a budget constraint

$$\max(X) = \sum_{i=1}^{I} X_i A_i \qquad \sum_{i=1}^{I} C_i X_i \le B$$

Solver in Excel

	X7 🕴 😣 ⊘ ((= fx 1-00-0	01300-01-030	0-00001_3304								
	Α	R	S	Т	U	V	W	X	Y	Z	AA	A
1	PARCEL_ID	BIRDS_PAR	MARSH_HA	Transaction Costs	Decision Variables		Constraints					
2	1-00-01300-01-0300-00001_3304	643.5316851	208.5935723	15000	1		Decision Var Binary	All_decvars	bin			
3	33500700000100_1146	409.2377587	110.2031592	15000	1		Budget	\$ 19,973,576.07	<=	\$ 20,000,000.	00	
4	1-00-01300-01-0200-00001_3305	447.0805344	171.941303	15000	1		Transaction Costs	525000				
5	33000400001700_93265	238.4385427	77.49200189	15000	1							
6	33000400000600_93358	173.6391807	56.43235179	15000	1		Objective MAX					
7	7-00-10500-01-0200-00001_63336	118.2906019	65.94668641	15000	1		Bird Abundance	5067.724542				
8	4-00-04900-01-0300-00001_37404	177.7846006	54.05090758	15000	1							
9	23501000000300_190798	209.789052	56.49384939	15000	1							
10	23502300000300_190792	137.7094841	37.08362652	15000	1							
11	23501700001500_189973	121.0864643	32.60723289	15000	1		Totals Parcels	35				
12	33000500000100_93264	100.4806978	32.65600578	15000	1		Average acre/parcel					
13	5-00-16500-01-0200-00001_40362	100.3353557	32.60876992	15000	1		Total acres	4591.84172				
14	1-00-04000-01-0100-00001_3613	104.0821428	31.64354089	15000	1							
15	33000400001600_91672	96.5184555	31.36828573	15000	1			000	Solver Pa	rameters		
16	1-00-04100-01-0100-00001_	87.06222597	26.46906601	15000	1				Someria	interine cer 5		
17	4-00-03900-01-2600-00001_37211	86.12647065	26.18457329	15000	1							
18	33001200001403_93322	125.7271477	40.86104643	15000	1			Set Objective: \$X	\$7		_	
19	33000900000100_93317	91.91052447	29.87071828	15000	1							
20	5-00-12400-01-0401-00001_44363	86.78958627	48.38495653	15000	1			To: 💽 Max 🔘 N	/in ⊖Va	alue Of: 0		
21	8-00-11300-02-1600-00001_75718	75.08005191	41.85692322	15000	1				0.			
22	23402500002700_110688	78.63386954	43.8381668	15000	1			By Changing Variable C	ells:			
23	33402500000200_1013	73.96527657	41.23543902	15000	1			dec vers				
24	33000500000101_92853	70.65402277	22.96240199	15000	1			dec_vars				1
25	23000300000900_93325	65.39850797	21.25437124	15000	1			Cubication the Company				
26	2-05-08700-01-0600-00001_	0.729429513	0.881429775	0	0			Subject to the Constrai	nts:			
27	8-00-11400-01-0100-00001_75785	197.6592989	110.1945175	15000	1			\$X\$3 <= \$Z\$3			Add	
28	23403200011700_111702	40.60055716	22.63469937	0	0			dec_vars = binary				
29	23300200000200_127070	64.62138275	36.02624381	0	0						Change	
30	33000300000500_93260	137.2064327	76.4922103	15000	1						enange	
31	13400800004200_55132	99.27806223	55.34724767	15000	1						Delete	
32	33400100000900_4688	119.7847657	32.2567	0	0						Delete	1
33	33001200001400_93321	119.8361583	38.94648786	0	0							
34	43300200000100_126139	21.64058413	12.06456635	0	0						Reset All	
35	23000800003500_91983	2.419367611	1.348790814	0	0							
36	4-00-06900-01-2500-00001_38049	12.03376647	14.54139144	0	0						Load/Save	
37	1-00-00300-01-1400-00001_2261	90.54175622	50.476781	0	0							
38	23501600003600_189969	106.0006793	59.09508827	0	0			Make Unconstraine	d Variables	Non-Negative		
39	2340300000600_106670	64.46698512	35.94016756	0	0			Make onconstraine	a variables	non-negative		
	Allpar1	+acre_allyrs_10MI	Budget 🖌 15MBud	dget 20MBudget +				Select a Solving Method	I: Simple	ex LP 🔍	Options	
	Normal View										options	

Results : \$10 million budget

Conservation benefit (bird density) by parcel easement value for parcels selected in the \$10M budget scenario.

Bubbles are color-coded by selection method (benefit targeting [BT], optimization [OPT]) and bubble size represents parcel unprotected marsh area.

Results : Land cover and sea level rise

Area (ha) of land cover types present on optimized parcels under current mean higher high water (MHHW) and three future sea level rise scenarios (0.5 m, 1.0 m, and 1.5 m), grouped by budget scenario.

Future Optimization Possibilities...

Goal Programming

<u>Specify multiple goals or targets</u>. Minimize the deviations from not achieving each goal.

Multiple conservation benefits - examples

Achieve Maximum #:

- 1. Bird abundance (bird abundance x probability of SLR [coastal response probability?])
- 2. Proportion of high marsh
- 3. Sites with marsh migration potential
- 4. Carbon storage

Achieve Minimum #:

- 1. saltmarsh sparrow abundance in specific area (e.g., X # birds in each state in breeding range)
- 2. At least 50% of selected parcels with low probability of SLR/permanent inundation, etc.

Whose objective function do we want to model? - - - i.e., Who has the funds for conservation and what do they want?

-NAWCA Standard Grants Program