

High-marsh habitat is critical to several species of birds

Principle Investigators:

Tom Hodgman - Maine DIFW
Brian Olsen - University of Maine
Greg Shriver - University of Delaware
Chris Elphick - University of Connecticut
Adrienne Kovach - University of New Hampshire
Jonathan Cohen - SUNY ESF

Graduate students:

Bri Benvenuti Tim Freiday
Alyssa Borowske Laura Garey
Meaghan Conway Rebecca Kern
Mo Correll Alison Kocek
Chris Field Sam Roberts

Kate Ruskin
Emma Shelley
Jen Walsh
Whitney Wiest

Comprehensive Regional Monitoring Program:

Surveys

Demographics

Comprehensive Regional Monitoring Program:

Surveys

Demographics

Comprehensive Regional Monitoring Program:

Surveys

Demographics

www.tidalmarshbirds.org

End goals:

• High-marsh predictive tool (70% minimum accuracy)

- High-marsh predictive tool (70% minimum accuracy)
- Comprehensive high/low marsh layer from Maine to Virginia

- High-marsh predictive tool (70% minimum accuracy)
- Comprehensive high/low marsh layer from Maine to Virginia
- Elevation data layer for points across the region and topographic mapping for representative marshes

- High-marsh predictive tool (70% minimum accuracy)
- Comprehensive high/low marsh layer from Maine to Virginia
- Elevation data layer for points across the region and topographic mapping for representative marshes

Community-specific delineation:

Delineate representative marsh communities within each SHARP sub-region:

- Low marsh
- High marsh
- Mixed

National Elevation Dataset

- 10 m resolution
- 3 m resolution

High-resolution imagery

National Agriculture Imagery Program (NAIP)

- 1 m X 1 m
- Near-IR Band now included
- 2010 **-** 2013

SPOT Imagery (if needed)

- 20 X 20 m
- Near, Mid IR bands included
- Annual imagery available

Fine-scale tidal data for imagery:

National Oceanographic and Atmospheric Administration (NOAA) regional tide predictions

- Julian Day
- Time since high tide
- Time since astronomical tide
- Time since last precipitation event

Use Classification And Regression Trees (CART) to develop predictive community models within the NWI

Some regional data is currently available

High / Non-high marsh layer

71% overall accuracy

CART analysis with Landsat band values, Landsat band Principle Component (PC) values, and tidal covariates

- High-marsh predictive tool (70% minimum accuracy)
- Comprehensive high/low marsh layer from Maine to Virginia
- Elevation data layer for points across the region and topographic mapping for representative marshes

Elevation data layer:

Real Time Kinematic (RTK) elevation data for SHARP-surveyed points

Compare RTK to existing LiDAR

Elevation data layer:

Topographic mapping of representative marshes

USGS 2012

Timeline:

- No Field data collection: Summer 2015
- RTK vs. LiDAR comparison: Fall 2015
- Plant model development: Fall 2015 Spring 2016
- Name Final layer developed: Summer 2016

Applications:

- Reassessment of high marsh cover on sub-decadal basis (e.g. after disturbance events)
- Input into regional conservation models Designing Sustainable Landscapes

Next steps in discussion:

- LiDAR input sources
- RTK transect sites and methods

Acknowledgements

Previous funding:

The Saltmarsh Habitat and Avian Research Program (SHARP)
Adaptation to Abrupt Climate Change IGERT Program
NSF, USFWS, MDIFW, NALCC, GSG

the troop of technicians that make SHARP possible

Questions?

