

Sediment fluxes to wetland complexes: Inferring trajectory through sediment budgets

Neil K. Ganju
U.S. Geological Survey
Coastal and Marine Geology Program
Woods Hole Coastal and Marine Science Center

U.S. Department of the Interior

U.S. Geological Survey

Role of sediment fluxes in wetland trajectory

Figure 7. Sketch of the process of channel formation starting from a nearly flat bottom configuration. Small perturbations of bottom elevations enhance flux concentration, leading to bottom erosion and the initiation of a channel in which tidal fluxes further concentrate, thus increasing channel dimensions in a self-sustained process.

- Channel the main conduit for sediment flux to wetland complex
- Stability of entire geomorphic planform a function of sediment flux
- Under conditions of SLR, wetland complexes must import sediment to maintain structure of planform
- Identifying sediment flux mechanisms and budget tells us about trajectory

Blackwater NWR: poster child for wetland instability

Measuring sediment fluxes

Continuous data: velocity, turbidity

Cross-sectional data: discharge, SSC

Time-series of forcing and flux: positive flux = seaward

Sediment flux response to wind: positive=seaward

Most export during periods of NW winds: resuspension and seaward export of water

Minor import during weak SW-SE winds

Some export during periods of NW winds

Most import during weak S winds: supply from Fishing Bay

Time-series of flux: positive is seaward export

	BW River	FB1 tidal creek
Advective	+0.82 (out)	+0.042 (out)
Dispersive	+0.31(out)	-0.034(in)
Stokes	-0.09(in)	-0.032 (in)
Total	+1.02 kg s ⁻¹ (out)	-0.03 kg s ⁻¹ (in)
Total/area	+1.29 kg m ⁻² y ⁻¹	-0.95 kg m ⁻² y ⁻¹

per day, or 172 m³ per day, or 172 m³ per day, or 172 m of 1 m x 1 m shoreline @ bulk dens of 500 kg/m³

~ 5 mm y⁻¹ distributed over estimated drainage area: keeping up with SLR

Conceptual model: sediment portfolios and wetland stability

Chesapeake Bay Blackwater wetland complex Transquaking wetland complex Wind-waves Wetland Subtidal + Source Mobilization Advection Petaluma River wetland complex Browns Island wetland complex Marine Wind-waves Subtidal

San Francisco Bay

Potential for collaboration

- Role of sediment transport cannot be distilled into single value of SSC
- Understanding of transport mechanisms and magnitudes necessary
- We have extensive time-series data for water level, SSC, fluxes
- We have sediment budgets for several complexes
- Sediment transport data can be used to build probabilistic or deterministic models
- Willing to collaborate at new sites as available, assuming science goals are aligned

