

## Conservation Status of Fish, Wildlife and Natural Habitats in the Northeast and Mid Atlantic Region

Mark Anderson and Arlene Olivero Sheldon













### Project Overview



#### Monitoring the Conservation of Fish and Wildlife in the Northeast

A Report on the Monitoring and Performance Reporting Framework for the Northeast Association of Fish and Wildlife Agencies



Prepared and compiled by: Foundations of Success



Technical materials developed by state and federal wildlife agency staff and partners across the Northeast

September 2008

- Guiding Document
- Advisory Committee
- Secured Lands
- Habitats & Species
  - Forest
  - Wetland
  - Unique habitats
  - Rivers and Streams
  - Lakes and Ponds
  - SGCN Species.



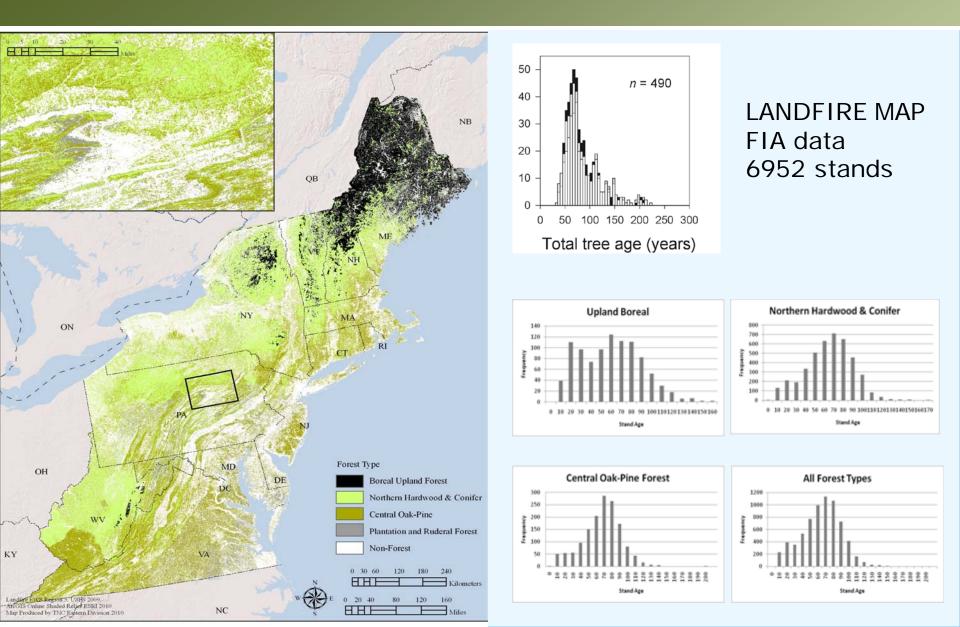
### **Report and Advisory Committee**



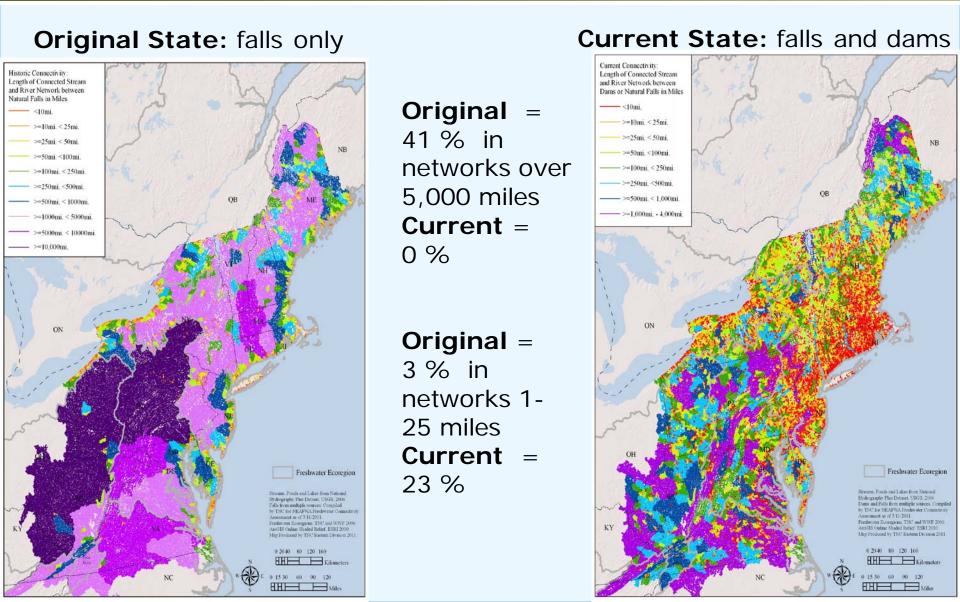


#### Conservation Status of Fish, Wildlife, and Natural Habitats in the Northeast Landscape

Implementation of the Northeast Monitoring Framework The Nature Conservancy · Eastern Conservation Science




http://conserveonline.org/workspaces/ecs/


#### **Representatives from every State**

- Jenny Dickson and Rick Jacobson of CT DEP;
- Robert Coxe and Kevin Kalasz of DE DFW;
- John O'Leary and Thomas O'Shea of MA DFW;
- Glenn Therres, Lynn Davidson, Scott Stranko, and
- Dana L.Limpert of MD DNR;
- George Matula and Sandy Ritchie of ME DIFW;
- Sim Oehler, John Kanter, Matt Carpenter, Steve Fuller,
- and John Tash of NH DFG;
- Dave Jenkins, Kris Schantz, and Miriam Dunne of NJ DFW,
- Tracey Tomajer, Greg Edinger, Dan Rosenblatt,
- and Erin White of NY DEC;
- Dan Brauning and Lisa Williams of PA GC,
- Dave Day of PA FBC,
- Jeffrey Wagner of PA WPC/NHP;
- Jon Kart and Rod Wentworth of VT DFW; Gary Foster of
- WV CNR; Becky Gwynn of VA DGIF,
- Dave Tilton, Genevieve Pullis LaRouche, Ron Essig,
- and Ken Sprankle of USFWS;
- Don Faber-Langendoen of NatureServe,
- Dan Lambert of American Bird Conservancy,
- Dave Chadwick of the AFWA, Mary Anne Theising of USEPA,
- James McKenna of USGS.

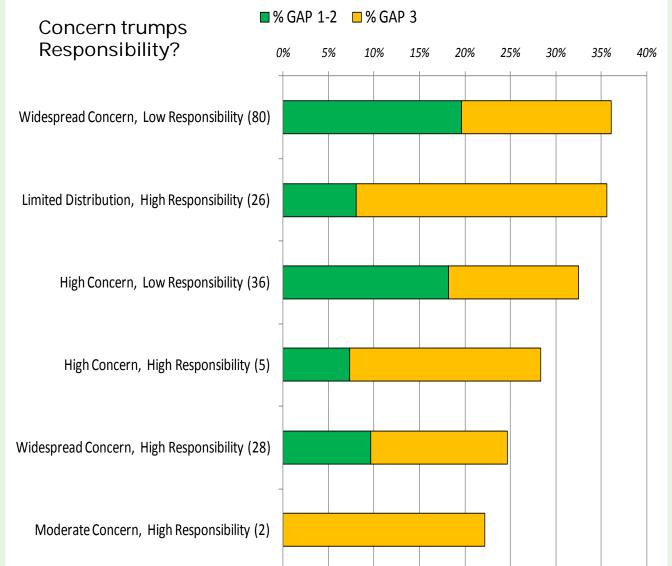
# Example: Forests: Age Structure



## Example: Rivers: Connected Networks





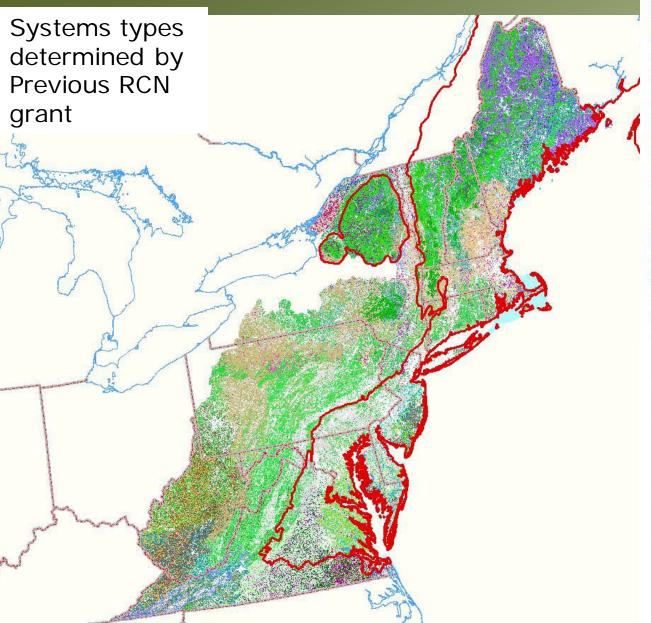

### Example: Securement by Category














### Mapping Terrestrial Habitats Base on NatureServe Ecological Systems



# **Terrestrial Habitats**



#### Ecological Systems/Habitats: Wetland, U

Laurentian-Acadian Conifer-Hwd Acid Swamp N-Central Appalachian Acidic Swamp Laur-Acad Alkaline Conifer-Hwd Swamp Laurentian-Acadian Freshwater Marsh Laur-Acad Wet Meadow-Shrub Swamp Boreal-Laur-Acadian Acidic Basin Fen N-Central Interior and Appal Acidic Peatland N-Central IntW et Flatwoods (wet Clayplain Forest) Acadian Coastal Salt Marsh & Estuary Marsh Acadian Maritime Bog Boreal-Laurentian Bog Laurentian-Acadian Floodplain Forest Eastern Boreal Floodplain SP system: N Appal-Acad Rocky Heath Outcrop SP system: Laur-Acad Calcareous Rocky Outcrop SP/LP system: Central Appal Dry Oak-Pine Forest SP system: Central App Pine-Oak Rocky Woodland SP system: L-A Acidic Cliff & Talus

SP system: L-A C alcareous Cliff & Talus

SP system: N-C entral Appal Acidic Cliff & Talus

SP system: N-C entral Appal C ircum neut Cliff & Talus

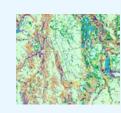
SP system: NE Interior Pine Barrens

LP/SP system: Great Lakes Alvar

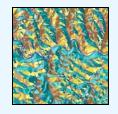
LP/SP system: Laurentian Acidic Rocky Outcrop

SP system: Great Lakes D une: 4 s mall occ's

SP/LP system: Acadian-Appalachian Alpine Tundra
Mtx system: Acad-Appal Montane Spr-Fir-Hwd Forest
LP/SP system: Acadian Sub-boreal Spruce Flat
Mtx system: Acadian Low-Elev Spr-Fir-Hwd Forest
Mtx system: L-A N. Hwd Forest, typic
Mtx system: L-A N. Hwd Forest, high conifer
Mtx system: L-A Red Oak-N. Hwd Forest
Mtx system: L-A N. Hwd Forest, moist/cool
Mtx system: L-A N. Hwd Forest, moist/cool
Mtx system: L-A Pine-Hem-Hwd Forest, moist/cool
LP/SP system: Appal Hem-N. Hwd Forest, typic
LP/SP system: Appal Hem-N. Hwd Forest, moist/cool
LP/SP system: Appal Hem-N. Hwd Forest, moist/cool


NLCD-NHD open water NLCD agricultural classes 81-82 NLCD developed classes 21-24 & 31

# Data Driven: Wall to wall grids and confirming points




#### Elevation

Geology



NW Wetland



Categorical Aspect



Canopy closure

Landforms



Shaded Relief

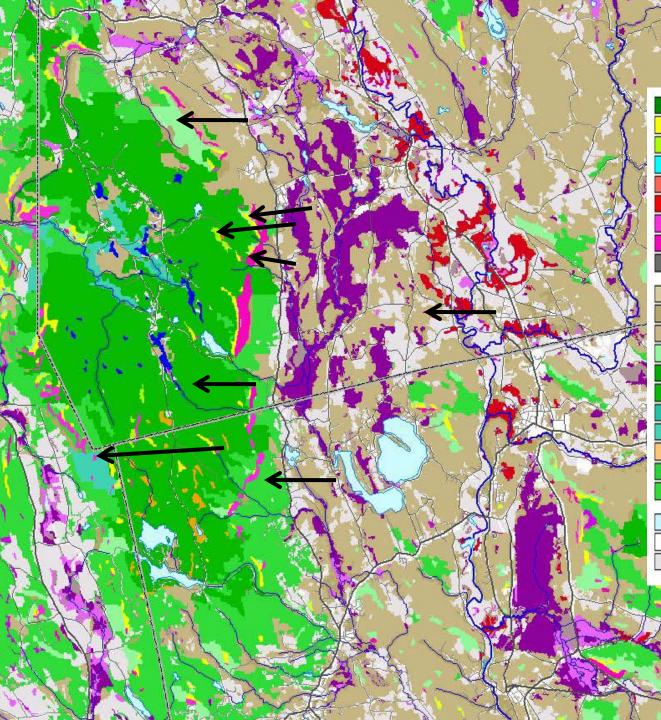
Rugosity



Solar



radiation


Precipitation

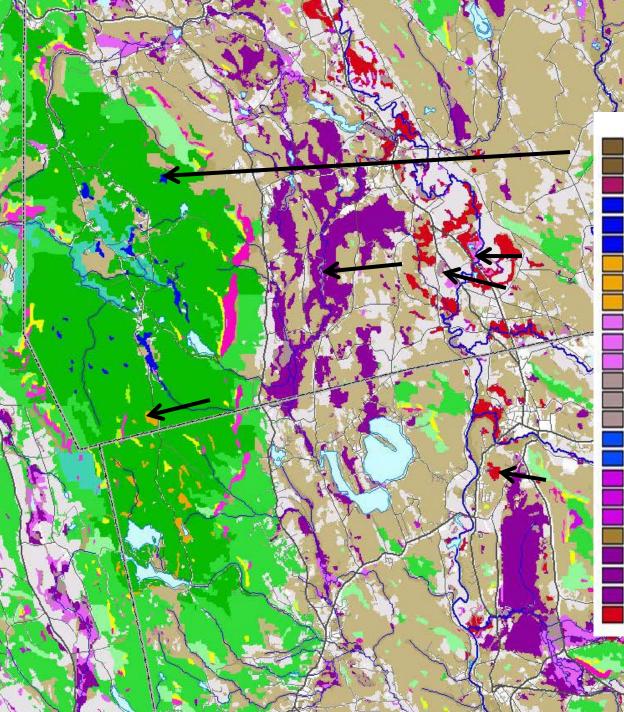
Landcover



Aspect

Over 10,000 FIA and NHP data points




# UPLAND

SP system: Acad-Appal Montane Spruce-Fir-Hwd Forest: 201.566
SP system: Central App Pine-Oak Rocky Woodland: 202.600
SP system: N Appal-Acad Rocky Heath Outcrop: 201.571
SP system: Eastern Serpentine Woodland: 202.347
SP system: L-A Acidic Cliff and Talus: 201.569
SP system: L-A Calcareous Cliff & Talus: 201.570
SP system: N-Central Appal Acidic Cliff and Talus: 202.601
SP system: N-Central Appal Circumneut Cliff & Talus: 202.603
SP system: NE Interior Pine Barrens: 202.590

mtx system: Appal Hem-N. Hwd Forest, drier mtx system: Appal Hem-N. Hwd Forest, moist/cool mtx system: Appal Hem-N. Hwd Forest, typic mtx system: Central Appal Dry Oak-Pine Forest mtx system: Laurentian-Acadian N. Hwd Forest, moist/cool mtx system: Laurentian-Acadian N. Hwd Forest, typic mtx system: Laur-Acad Pine-Hem-Hwd Forest, typic mtx system: Laur-Acad Pine-Hem-Hwd Forest, typic mtx system: NE unr-Acad Pine-Hem-Hwd Forest, typic mtx system: NE Coastal & Interior Pine-Oak Forest mtx system: NE Interior Dry-Mesic Oak Forest, moist/cool mtx system: NE Interior Dry-Mesic Oak Forest, typic

Water Developed Agriculture

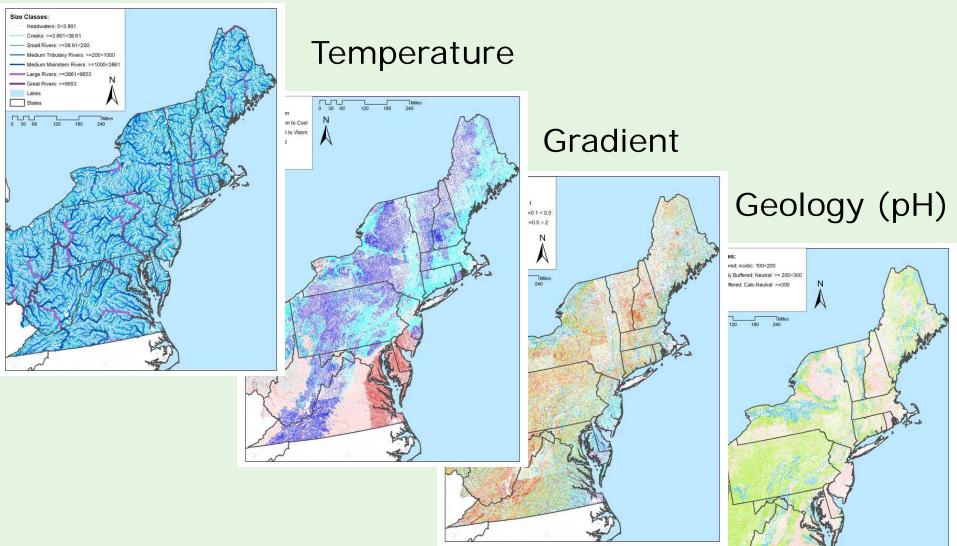
> Underlying patterns Related to physical Features.



# WETLAND

Bore al-Laurentian-Acadian Acidic Basin Fent is olated Boreal-Laur-Acad Acidic Basin Fen: smaller stream riparian Estuarine units (185) along brackish shores in NY/NJ/MD L-A Alkaline Conif-Hwd Swamp: bigger river fldpln L-A Alkaline Conif-Hwd Swamp: isolated L-A Alkaline Conif-Hwd Swamp: smaller stream riparian L-A Conif-Hwd Acid Swamp: bigger river fldpln L-A Conif-Hwd Acid Swamp: is olated L-A Conif-Hwd Acid Swamp: smaller stream riparian L-A Freshwater Marsh: bigger river fldpln L-A Freshwater Marsh: isolated L-A Freshwater Marsh: smaller stream riparian L-A Wet Meadow-Shrub Swamp: bigger river fldpln L-A Wet Meadow-Shrub Swamp: isolated L-A Wet Meadow-Shrub Swamp: smaller stream riparian Laur-Acad Akaline Fen: isolated Laur-Acad Akaline Fen: smaller stream riparian N-Central Appal Acidic Swamp: bigger river fldpln N-Central Appal Acidic Swamp: isolated N-Central Appal Acidic Swamp: smaller stream riparian N-Central Int and Appal Acidic Peatland N-Central Int and Appal Rich Swamp: bigger river fldpln N-Central Int and Appal Rich Swamp: isolated N-Central Int and Appal Rich Swamp: smaller stream riparian N-Central Interior W et Flatwoods




### Mapping Rivers Systems

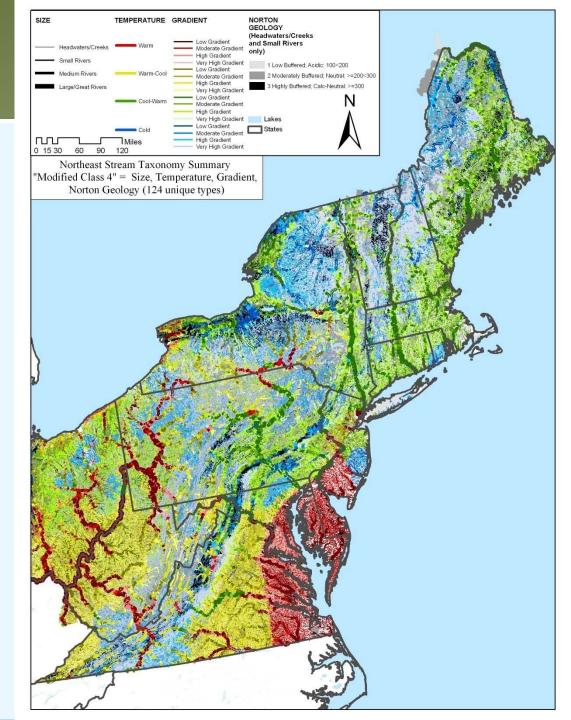




## Key Habitat Variables

#### SIZE (Drainage Area)




Results NEAFWA Stream Classification includes 257 types,

This simplified map groups them into 96 types.

From Very high gradient, acidic, cold headwater creek (1a\_6\_1\_1)

To Very low gradient, calcareous, warm Great River (5\_1\_3\_3)

Code = Size, Gradient, Geo, Temp



High gradient acidic cold headwater stream. Regional Size Class (1b): Northeast Headwaters

**Regional Gradient Class** 

(5): High

Regional Norton Geology Class

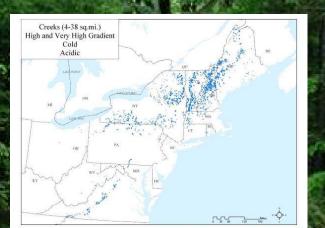
(1): Low Buffering Capacity, Acidic

**Regional Temperature Class** 

(1): Cold

<u>1b511:</u>

<u>High gradient acidic cold headwater stream</u>


Linked State Names:

MA Small Streams,

VT Cold headwater acidic streams,

NY Coldwater Stream,

CT Coldwater Stream,





# NEAFWA Aquatic Connectivity

Colin Apse & Erik martin, The nature conservancy

CD La

#### Purpose

This project endeavors to produce a tiered list of dams in the Northeast US based on their potential ecological benefit if remediated for fish passage, and develop a tool that allows managers to re-rank dams at

multiple spatial scales

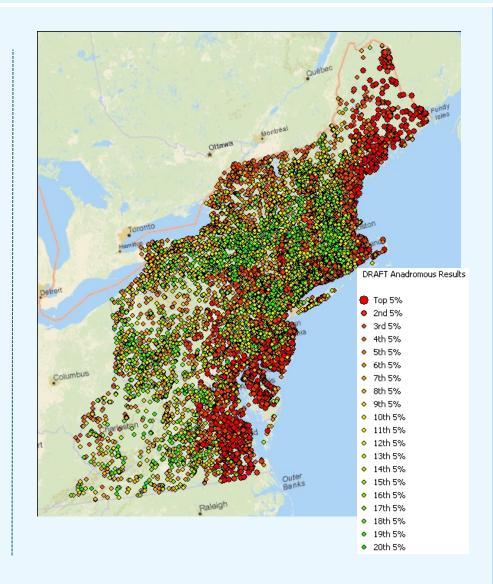


Montsweag Brook, ME, before Montsweag Dam remova



Montsweag Brook after. Photos by Dan Creek

- Dams and other barriers to the free movement of fish and other aquatic organisms have had a negative impact on the health and viability of these populations for well over a century in the eastern United States.
- Removing or otherwise mitigating dams can improve the health of aquatic ecosystems and allow fish populations to recover.
- Given the financial and organizational obstacles to dam removal projects, it is critical that managers focus their efforts and resources where they can have the greatest ecological impact.




#### Methods

- Data Collection & Preparation
  - Dams, waterfalls, anadromous fish habitat collected from states & other sources, processed, iteratively reviewed with state contacts
- Metrics calculated in GIS for every dam. Metrics grouped in 5 categories. The Barrier Analysis Tool (BAT), an ArcGIS plug-in developed for this project, was used to calculate many of the metrics.
  - Connectivity Status
  - Connectivity Improvement
  - Watershed & Local Condition
  - Ecological
  - Size Class

### Status & Utility

- 2<sup>nd</sup> draft of results are currently being reviewed by state workgroup participants
- Final results: end of August
- Potential utility of results (as suggested by workgroup participants)
  - Project evaluation
  - Communicating with owners/funders
  - Grant writing
  - Justifying projects during funding allocation
  - Bring attention to new projects that may not have been looked at before
  - Developing basin-level plans

