USGS Mission

Provide impartial information on the health of our ecosystems and environment, the natural hazards that threaten us, the natural resources we rely on, the impacts of climate and land-use change, and the core science systems that help us provide timely, relevant, and useable information.

Partners/Customers

DOI Bureaus, State Agencies, Other Federal Agencies, NGO's, Scientific Community

USGS Mission Areas/Expertise

Ecosystems – species management, land management/ restoration, biological threats, CRU

Core Science System - modeling, mapping, data delivery

Climate/Land Use Change – LULC change rates, causes, consequences (e.g., floods, water availability);

Energy and Minerals – mapping, resource assessment

Environmental Health - ecological and human health, exposure to disease agents

Natural Hazards - observations, analyses, and research to increase resiliency to natural hazards

Water - capabilities, tools, and delivery systems to meet the Nation's water-resource needs

USGS - Relevance to Managers

Long term data/interpretation – NWIS, Chesapeake Bay nutrient/ sediment trends, breeding bird survey, SET network, NGS

Decision analysis and support tools -

SDM/AM - decisions with uncertainty, ESA species status assessments, Herring River Estuary Restoration,

Integrated spatial modeling – mapping groundwater stream inputs, CBay fish habitat tool, ginseng on NF, Hurricane Sandy (surge, contaminants models)

Research Applications – Genetics/genomics, Lidar/3-D mapping, ecosystem services, weather radar/bird migration, Ford - acoustic bat monitoring

USGS Science at NEAFWA meeting – NAACC prioritization tool (StreamStats data); Restoring brook trout connectivity (King - genetics; Letcher – movement); Ches Bay fishery management (land-use trends analysis)

USGS – Collaborations

Northeast Conservation Framework

GOAL-SETTING

Which species/resources to conserve?
At what levels?
Who decides?

BIOLOGICAL ASSESSMENT

What do we know about the status of priority wildlife and resources?

INFORMATION MANAGEMENT

How will we manage the demand for and creation of data?

CONSERVATION DESIGN

What should landscapes look like to conserve all species and resources at levels that society wants?

SCIENCE TRANSLATION TOOLS

How do we make science solutions useful?

MONITORING, EVALUATION, RESEARCH

PRIORITIES

demand immediate

attention?

Which species/resources

What new information will we gather to support conservation?

CONSERVATION ADOPTION

How do we get communities and landowners engaged in conservation?

CONSERVATION DELIVERY

How will we most efficiently put conservation on the ground?

Landscape Conservation Research Framework

