USGS Mission Provide impartial information on the health of our ecosystems and environment, the natural hazards that threaten us, the natural resources we rely on, the impacts of climate and land-use change, and the core science systems that help us provide timely, relevant, and useable information. ### Partners/Customers DOI Bureaus, State Agencies, Other Federal Agencies, NGO's, Scientific Community # **USGS** Mission Areas/Expertise Ecosystems – species management, land management/ restoration, biological threats, CRU Core Science System - modeling, mapping, data delivery Climate/Land Use Change – LULC change rates, causes, consequences (e.g., floods, water availability); Energy and Minerals – mapping, resource assessment Environmental Health - ecological and human health, exposure to disease agents Natural Hazards - observations, analyses, and research to increase resiliency to natural hazards Water - capabilities, tools, and delivery systems to meet the Nation's water-resource needs # USGS - Relevance to Managers Long term data/interpretation – NWIS, Chesapeake Bay nutrient/ sediment trends, breeding bird survey, SET network, NGS ### Decision analysis and support tools - SDM/AM - decisions with uncertainty, ESA species status assessments, Herring River Estuary Restoration, Integrated spatial modeling – mapping groundwater stream inputs, CBay fish habitat tool, ginseng on NF, Hurricane Sandy (surge, contaminants models) Research Applications – Genetics/genomics, Lidar/3-D mapping, ecosystem services, weather radar/bird migration, Ford - acoustic bat monitoring USGS Science at NEAFWA meeting – NAACC prioritization tool (StreamStats data); Restoring brook trout connectivity (King - genetics; Letcher – movement); Ches Bay fishery management (land-use trends analysis) #### **USGS** – Collaborations ### Northeast Conservation Framework #### GOAL-SETTING Which species/resources to conserve? At what levels? Who decides? #### BIOLOGICAL ASSESSMENT What do we know about the status of priority wildlife and resources? ## INFORMATION MANAGEMENT How will we manage the demand for and creation of data? #### CONSERVATION DESIGN What should landscapes look like to conserve all species and resources at levels that society wants? ## SCIENCE TRANSLATION TOOLS How do we make science solutions useful? #### MONITORING, EVALUATION, RESEARCH **PRIORITIES** demand immediate attention? Which species/resources What new information will we gather to support conservation? #### CONSERVATION ADOPTION How do we get communities and landowners engaged in conservation? #### CONSERVATION DELIVERY How will we most efficiently put conservation on the ground? ### Landscape Conservation Research Framework