

Update: The Connecticut River Watershed Landscape Conservation Design Pilot

Scott Schwenk, Science Coordinator North Atlantic Landscape Conservation Cooperative

October 28, 2014

Background & History

- Builds on 4 years of LCC conservation science tool development and 7 years of RCN program
- Nov. 2013: approved by LCC Steering Committee and USFWS NE Region leaders

Objectives for Pilot Process

- 1. <u>Collaboratively prioritize</u> places, and identify the strategies and actions, necessary to conserve ecosystems, and the fish, wildlife, and plants they support, into the future
- 2. <u>Deliver information</u>, maps, and tools with design options for prioritizing at scales and in formats needed by partners
- 3. <u>Establish a process</u> for conducting landscape conservation design that can be applied and adopted elsewhere in region

Partnership and Process Accomplishments

- Assembled leadership team (North Atlantic LCC staff, USFWS, Kevin McGarigal – UMass)
- Convened core team of more than 30 partners: state fish and wildlife; federal; NGO
- Conducted 8 monthly, in-person meetings + subteam meetings

Technical Progress and Accomplishments

- Agreed to 2 overarching goals
- Developed species (population and habitat) and ecosystem objectives
- Identified the major elements of the design
- Reached a series of collaborative decisions on the design
- Began deliberations on drivers of future
 change

Examples of Collaborative Decisions

- Should certain species receive elevated weight? (Yes – regional responsibility, rarity, and threat)
- Should certain ecosystem types receive elevated weight? (Yes)
- How should aquatic areas be prioritized? (Stream segment cores)
- Core areas: fewer, larger or more, smaller

Combined Conservation Design Elements

Communications Accomplishments

- Extensive project webpage
- Group workspace on Conservation Planning Atlas
- Presentations and poster
- North Atlantic LCC newsletters
- Survey of participants

Built on Regionally Consistent Datasets – e.g., Representative (Surrogate) Species

Landscape Capability Models based on habitat associations, stressors and field data

Climate Suitability Models based on current and projected humid temperate domain

North Atlantic 💥 Landscape Conservation Cooperative

Ecosystems – Ecological Integrity (UMass)

adapt to disturbance and stress

Ecosystems – Terrestrial Resiliency (The Nature Conservancy)

Integrating Elements

Next Steps

- Finalize design (e.g., integrating ecosystem and species approaches)
- Communicate and distribute results and tools
- Foster implementation
- For discussion helping apply approach and tools elsewhere in Northeast

Lessons Learned – Preliminary Assessment

- Using LCC-sponsored tools, LCC products and other datasets can be integrated into sophisticated conservation design
- Substantial staff capacity and partner time required
- Learning may expedite applications elsewhere – to a point
- Novel aquatic components
- Limitations in data quality and availability

Apply to other watersheds/landscapes

Core Areas Regional conductance

014

- Learning
 - Process
 - Products
 - Collaboration
 - Decisions
 - Weighting
 - Simplification
 - Challenges

Thanks - For More Information

 Connecticut River Watershed Pilot partnership process and decisions: <u>northatlanticlcc.org/groups/connecticut-river-</u> <u>watershed-pilot</u>

LCC Project Lead Scott Schwenk: william_schwenk@fws.gov

- Technical components and design by UMass: <u>www.umass.edu/landeco/research/dsl/dsl.html</u>
- P.I. Kevin McGarigal mcgarigalk@ eco.umass.edu

Next Steps

- Finalize design (e.g., integrating ecosystem and species approaches)
- Communicate and distribute results and tools
- Foster implementation
- For discussion helping apply approach and tools elsewhere in Northeast

Multiple Scales of Conservation Plan. & Design

- Spatial scales that match partnerships and decisions being made
- Ability to have scales inform each other
 - Regional context for watershed, state and local actions
- Plan based on both current and projected future conditions
 - Climate change
 - Urban growth
 - Relevant time intervals

*Projected for 2010, RCP8.5 *Projected for 2080, RCP8.5 Ps are Representative Concentration Pathways of greenhouse gas concentration. Levels 4.5 and 8.5. respectively represent lower and higher levels of concentration, as within the IPCC 5th Assessment Report

Components for Facilitating Conservation Planning & Design at Multiple Scales

- Foundational Data
- Information Management
- Science Delivery
- Conservation Design

- landscape and regional scales

Type of Unit	Administrative	Watersheds	Terrestrial Ecological	Coastal/Marin
Scale Extent			Regions	e Ecoregions
Regional	Northeast	Drainage Area (e.g.	Bird Conservation	Realm: Cold
	Region (13	Northwest Atlantic)	Regions, Landscape	Temperate
	northeast states,		Conservation	Northwest
	could include		Cooperative areas,	Atlantic
	provinces)		TNC Ecorogions	
Sub-regional	LCC facilitate	d process to apply	y science and tools	vinces, e.g.
	in collaborativ	ve conservation de	esign process at	adian,
	these scales an	nd apply learning	to future efforts	ginian
	states)	Bay Watershed)	Broadleat Forest)	
Landscape or	State or	Large watersheds	EPA/Omernik Level	Large
State	Province	(HUC level 4), e.g.	IV USFS/Bailey	Estuaries, e.g.
		Connecticut River	Provinces	Narragansett
		watershed)		Bay
Sub-	Country	Tributany auk	Maion common and of a	S1l estuary
Landscape or	LCC information management and science delivery _y			
State	support for pa	rtner networks to	deliver translate an	nd
Local	help partners a	apply science and	tools at these scale	es and or
		12	road-bounded block	beach complex
Site	Landholding	Stream reach	Habitat patch or small	Tidal wettand
	(c, g, refuge)			

Initial LCC Strategy for Cons. Design

- Facilitate collaborative conservation designs at key scales to both support planning at those scales and apply lessons learned to future efforts
 - Initial application at the regional scale should be a collaboration with state fish and wildlife agencies to support the development of regional Conservation Opportunity Areas (COAs) for State Wildlife Action Plan Updates
 - Initial landscape scale conservation designs should be focused on in large watersheds or other similar scale ecoregions where there are active partnerships working with an initial pilot in the Connecticut River Watershed

Conservation Design Next Steps: Regional Relative Value Maps of Species and Ecosystems

Develop model outputs and maps of showing relative value of habitats for species and ecosystems at the regional scale under current and projected future conditions and scaled to the region, states and watersheds/ecoregions.

Conservation Design Next Steps: Regional Relative Value Maps of Species and Ecosystems

Conservation Design Next Steps: Regional Relative Value Maps of Species and Ecosystems

_ow:1

Hydrological Unit Code (HUC) 8 IEI scaled by HUC 8 Value High : 100

Low:1

State Boundaries IEI scaled by state Value High : 100

Low:1

Additional Conservation Design Steps – Demonstrate Regional Conservation Designs

 Using a "standard" set of weightings and decisions (informed by lessons learned in the Connecticut River watershed), demonstrate conservation designs (core areas and connections) for representative species and ecosystems at regional scale

North Atlantic M Landscape Conservation

Additional Conservation Design Steps – Support Partner Designs in Other Landscapes

 Support conservation design efforts by partnerships in other watersheds and landscapes across the region using similar tools and approaches

Science Delivery -Demonstration Projects

- Partners promote the use and adoption of landscape science by demonstrating applications
- <u>Chesapeake Conservancy</u>
 - using the LCC science products to prioritize locations to best address regional conservation needs along with needs identified by communities as part of their large landscape conservation effort, *Envision the Susquehanna.*

Additional Conservation Design Steps

Discussion

